模型:

timm/resnet50.tv_in1k

英文

resnet50.tv_in1k模型卡片

一个ResNet-B图像分类模型。

该模型具有以下特点:

  • ReLU激活
  • 单层7x7卷积与池化
  • 1x1卷积快捷方式下采样

在ImageNet-1k上进行训练,使用原始的torchvision模型权重。

模型详情

模型用途

图像分类

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('resnet50.tv_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

特征图提取

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'resnet50.tv_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 64, 112, 112])
    #  torch.Size([1, 256, 56, 56])
    #  torch.Size([1, 512, 28, 28])
    #  torch.Size([1, 1024, 14, 14])
    #  torch.Size([1, 2048, 7, 7])

    print(o.shape)

图像嵌入

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'resnet50.tv_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 2048, 7, 7) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

模型比较

在timm中探索该模型的数据集和运行时度量。

model img_size top1 top5 param_count gmacs macts img/sec
1238321 320 86.72 98.17 93.6 35.2 69.7 451
1238321 288 86.51 98.08 93.6 28.5 56.4 560
12310321 288 86.49 98.03 93.6 28.5 56.4 557
12310321 224 85.96 97.82 93.6 17.2 34.2 923
12312321 224 85.11 97.44 468.5 87.3 91.1 254
12313321 416 85.0 97.12 191.9 108.4 213.8 134
12314321 352 84.96 97.22 102.1 50.2 101.2 291
12314321 320 84.73 97.18 102.1 41.5 83.7 353
12316321 384 84.71 96.99 164.0 77.6 154.7 183
12317321 288 84.57 97.08 93.6 28.5 56.4 557
12318321 320 84.45 97.08 93.2 31.5 67.8 446
12319321 352 84.43 96.97 129.9 51.1 105.5 280
12320321 288 84.36 96.92 93.6 27.6 53.0 595
12321321 320 84.35 97.04 66.8 24.1 47.7 610
12316321 288 84.3 96.94 164.0 43.7 87.1 333
12323321 224 84.28 97.17 88.8 16.5 31.2 1100
12313321 320 84.24 96.86 191.9 64.2 126.6 228
12325321 288 84.19 96.87 93.6 27.2 51.6 613
12326321 224 84.18 97.19 194.0 36.3 51.2 581
12327321 288 84.11 97.11 44.6 15.1 29.0 1144
12328321 320 83.97 96.82 64.7 31.2 67.3 518
12318321 256 83.87 96.75 93.2 20.2 43.4 692
12317321 224 83.86 96.65 93.6 17.2 34.2 923
12331321 320 83.72 96.61 86.6 24.3 48.1 617
12321321 256 83.69 96.78 66.8 15.4 30.6 943
12320321 224 83.68 96.61 93.6 16.7 32.0 986
12334321 320 83.67 96.74 60.2 24.1 47.7 706
12319321 256 83.59 96.61 129.9 27.1 55.8 526
12325321 224 83.58 96.4 93.6 16.5 31.2 1013
12327321 224 83.54 96.83 44.6 9.1 17.6 1864
12338321 288 83.46 96.54 60.2 19.1 37.3 904
12339321 224 83.35 96.85 194.0 36.3 51.2 582
12328321 256 83.23 96.53 64.7 20.0 43.1 809
12341321 224 83.22 96.75 44.2 8.0 21.2 1814
12342321 288 83.16 96.38 83.5 25.7 51.6 590
12334321 256 83.14 96.38 60.2 15.4 30.5 1096
12344321 320 83.02 96.45 44.6 16.5 34.8 992
12345321 288 82.98 96.54 44.6 13.4 28.2 1077
12346321 224 82.98 96.25 83.5 15.5 31.2 989
12331321 256 82.86 96.28 86.6 15.6 30.8 951
12348321 224 82.83 96.22 88.8 16.5 31.2 1099
12338321 224 82.8 96.13 60.2 11.6 22.6 1486
12350321 288 82.8 96.32 44.6 13.0 26.8 1291
12351321 288 82.74 95.71 60.2 19.1 37.3 905
12352321 224 82.69 96.63 88.8 16.5 31.2 1100
12353321 288 82.62 95.75 60.2 19.1 37.3 904
12354321 288 82.61 96.49 25.6 8.9 20.6 1729
12355321 288 82.53 96.13 36.8 9.9 21.5 1773
12356321 224 82.5 96.02 126.9 22.8 21.2 1078
12342321 224 82.46 95.92 83.5 15.5 31.2 987
12358321 288 82.36 96.18 35.7 8.1 20.9 1964
12359321 320 82.35 96.14 25.6 8.8 24.1 1386
12360321 288 82.31 95.63 44.6 13.0 26.8 1291
12361321 288 82.29 96.01 63.6 13.6 28.5 1078
12362321 224 82.29 96.0 60.2 11.6 22.6 1484
12363321 288 82.27 96.06 68.9 18.9 23.8 1176
12344321 256 82.26 96.07 44.6 10.6 22.2 1542
12365321 288 82.24 95.73 44.6 13.0 26.8 1290
12366321 288 82.2 96.14 27.6 7.0 23.8 1547
12345321 224 82.18 96.05 44.6 8.1 17.1 1771
12368321 224 82.17 96.22 25.0 4.3 14.4 2943
12369321 288 82.12 95.65 25.6 7.1 19.6 1704
12370321 288 82.03 95.94 25.0 7.0 23.8 1745
12371321 288 82.0 96.15 24.9 5.8 12.7 1787
12355321 256 81.99 95.85 36.8 7.8 17.0 2230
12348321 176 81.98 95.72 88.8 10.3 19.4 1768
12351321 224 81.97 95.24 60.2 11.6 22.6 1486
12350321 224 81.93 95.75 44.6 7.8 16.2 2122
12376321 224 81.9 95.77 44.6 7.8 16.2 2118
12377321 224 81.84 96.1 194.0 36.3 51.2 583
12358321 256 81.78 95.94 35.7 6.4 16.6 2471
12353321 224 81.77 95.22 60.2 11.6 22.6 1485
12354321 224 81.74 96.06 25.6 5.4 12.4 2813
12381321 288 81.65 95.54 25.6 7.1 19.6 1703
12382321 288 81.64 95.88 25.6 7.2 19.7 1694
12383321 224 81.62 96.04 88.8 16.5 31.2 1101
12384321 224 81.61 95.76 68.9 11.4 14.4 1930
12385321 288 81.61 95.83 25.6 8.5 19.2 1868
12360321 224 81.5 95.16 44.6 7.8 16.2 2125
12387321 288 81.48 95.16 25.0 7.0 23.8 1745
12388321 288 81.47 95.71 25.9 6.9 18.6 2071
12363321 224 81.45 95.53 68.9 11.4 14.4 1929
12390321 288 81.44 95.22 25.6 7.2 19.7 1908
12359321 256 81.44 95.67 25.6 5.6 15.4 2168
12392321 288 81.4 95.82 30.2 6.8 13.9 2132
12393321 288 81.37 95.74 25.6 7.2 19.7 1910
12365321 224 81.32 95.19 44.6 7.8 16.2 2125
12395321 288 81.3 95.65 28.1 6.8 18.4 1803
12396321 288 81.3 95.11 25.0 7.0 23.8 1746
12366321 224 81.27 95.62 27.6 4.3 14.4 2591
12369321 224 81.26 95.16 25.6 4.3 11.8 2823
12399321 288 81.23 95.54 15.7 4.8 19.6 2117
123100321 224 81.23 95.35 115.1 20.8 38.7 545
123101321 288 81.22 95.11 25.6 6.8 18.4 2089
123102321 288 81.22 95.63 25.6 6.8 18.4 676
123103321 288 81.18 95.09 25.6 7.2 19.7 1908
123104321 224 81.18 95.98 25.6 4.1 11.1 3455
123105321 224 81.17 95.34 25.0 4.3 14.4 2933
12370321 224 81.1 95.33 25.0 4.3 14.4 2934
123107321 288 81.1 95.23 28.1 6.8 18.4 1801
123108321 288 81.1 95.12 28.1 6.8 18.4 1799
123109321 224 81.02 95.41 60.3 12.9 25.0 1347
123110321 288 80.97 95.44 25.6 6.8 18.4 2085
12388321 256 80.94 95.45 25.9 5.4 14.7 2571
123112321 224 80.93 95.73 44.2 8.0 21.2 1814
123113321 288 80.91 95.55 25.6 6.8 18.4 2084
123114321 224 80.9 95.31 49.0 8.0 21.3 1585
123115321 224 80.9 95.3 88.2 15.5 31.2 918
123116321 288 80.86 95.52 25.6 6.8 18.4 2085
123117321 224 80.85 95.43 25.6 4.1 11.1 3450
12381321 224 80.84 95.02 25.6 4.3 11.8 2821
12371321 224 80.79 95.62 24.9 3.5 7.7 2961
123120321 288 80.79 95.36 19.8 6.0 14.8 2506
123121321 288 80.79 95.58 19.9 4.2 10.6 2349
123122321 288 80.78 94.99 25.6 6.8 18.4 2088
123123321 288 80.71 95.43 25.6 6.8 18.4 2087
123124321 288 80.7 95.39 25.0 7.0 23.8 1749
12361321 192 80.69 95.24 63.6 6.0 12.7 2270
12390321 224 80.68 94.71 25.6 4.4 11.9 3162
123127321 288 80.68 95.36 19.7 6.0 14.8 2637
123128321 224 80.67 95.3 25.6 4.1 11.1 3452
123129321 288 80.67 95.42 25.0 7.4 25.1 1626
12385321 224 80.63 95.21 25.6 5.2 11.6 3034
12382321 224 80.61 95.32 25.6 4.4 11.9 2813
123132321 224 80.61 94.99 83.5 15.5 31.2 989
123133321 288 80.6 95.31 19.9 6.0 14.8 2578
12399321 256 80.57 95.17 15.7 3.8 15.5 2710
123135321 224 80.56 95.0 60.2 11.6 22.6 1483
12393321 224 80.53 95.16 25.6 4.4 11.9 3164
12387321 224 80.53 94.46 25.0 4.3 14.4 2930
12356321 176 80.48 94.98 126.9 14.3 13.2 1719
123139321 224 80.47 95.2 60.2 11.8 23.4 1428
123140321 288 80.45 95.32 25.6 6.8 18.4 2086
12392321 224 80.45 95.24 30.2 4.1 8.4 3530
12396321 224 80.45 94.63 25.0 4.3 14.4 2936
12384321 176 80.43 95.09 68.9 7.3 9.0 3015
123144321 224 80.42 95.01 44.6 8.1 17.0 2007
123101321 224 80.38 94.6 25.6 4.1 11.1 3461
123120321 256 80.36 95.1 19.8 4.8 11.7 3267
123147321 224 80.34 94.93 44.2 8.0 21.2 1814
123148321 224 80.32 95.4 25.0 4.3 14.4 2941
123149321 224 80.28 95.16 44.7 9.2 18.6 1851
12395321 224 80.26 95.08 28.1 4.1 11.1 2972
123151321 288 80.24 95.24 25.6 8.5 19.9 1523
123103321 224 80.22 94.63 25.6 4.4 11.9 3162
12362321 176 80.2 94.64 60.2 7.2 14.0 2346
123107321 224 80.08 94.74 28.1 4.1 11.1 2969
123127321 256 80.08 94.97 19.7 4.8 11.7 3284
123133321 256 80.06 94.99 19.9 4.8 11.7 3216
123102321 224 80.06 94.95 25.6 4.1 11.1 1109
123108321 224 80.02 94.71 28.1 4.1 11.1 2962
123159321 288 79.97 95.05 25.6 6.8 18.4 2086
123160321 224 79.92 94.84 60.2 11.8 23.4 1455
123161321 224 79.91 94.82 27.6 4.3 14.4 2591
123110321 224 79.91 94.67 25.6 4.1 11.1 3456
12376321 176 79.9 94.6 44.6 4.9 10.1 3341
123164321 224 79.89 94.97 35.7 4.5 12.1 2774
123116321 224 79.88 94.87 25.6 4.1 11.1 3455
123166321 320 79.86 95.07 16.0 5.2 16.4 2168
123122321 224 79.85 94.56 25.6 4.1 11.1 3460
123168321 288 79.83 94.97 25.6 6.8 18.4 2087
123169321 224 79.82 94.62 44.6 7.8 16.2 2114
123124321 224 79.76 94.6 25.0 4.3 14.4 2943
123113321 224 79.74 94.95 25.6 4.1 11.1 3455
123121321 224 79.74 94.87 19.9 2.5 6.4 3929
123173321 288 79.71 94.83 19.7 6.0 14.8 2710
123174321 224 79.68 94.74 60.2 11.6 22.6 1486
123129321 224 79.67 94.87 25.0 4.5 15.2 2729
123176321 288 79.63 94.91 25.6 6.8 18.4 2086
123177321 224 79.56 94.72 25.6 4.3 11.8 2805
123178321 224 79.53 94.58 44.6 8.1 17.0 2062
123123321 224 79.52 94.61 25.6 4.1 11.1 3459
123117321 176 79.42 94.64 25.6 2.6 6.9 5397
123181321 288 79.4 94.66 18.0 5.9 14.6 2752
123140321 224 79.38 94.57 25.6 4.1 11.1 3459
123105321 176 79.37 94.3 25.0 2.7 9.0 4577
123184321 224 79.36 94.43 25.0 4.3 14.4 2942
123185321 224 79.31 94.52 88.8 16.5 31.2 1100
123186321 224 79.31 94.53 44.6 7.8 16.2 2125
123151321 224 79.31 94.63 25.6 5.2 12.0 2524
123128321 176 79.27 94.49 25.6 2.6 6.9 5404
123189321 224 79.25 94.31 25.0 4.3 14.4 2931
123190321 224 79.22 94.84 25.6 4.1 11.1 3451
123173321 256 79.21 94.56 19.7 4.8 11.7 3392
123192321 224 79.07 94.48 25.6 4.4 11.9 3162
123159321 224 79.03 94.38 25.6 4.1 11.1 3453
123194321 224 79.01 94.39 25.6 4.1 11.1 3461
123181321 256 79.01 94.37 18.0 4.6 11.6 3440
123166321 256 78.9 94.54 16.0 3.4 10.5 3421
123135321 160 78.89 94.11 60.2 5.9 11.5 2745
123198321 224 78.84 94.28 126.9 22.8 21.2 1079
123199321 288 78.83 94.24 16.8 4.5 16.8 2251
123168321 224 78.81 94.32 25.6 4.1 11.1 3454
123201321 288 78.74 94.33 16.8 4.5 16.7 2264
123202321 224 78.72 94.23 25.7 5.5 13.5 2796
123203321 224 78.71 94.24 25.6 4.4 11.9 3154
123204321 224 78.47 94.09 68.9 11.4 14.4 1934
123176321 224 78.46 94.27 25.6 4.1 11.1 3454
123206321 288 78.43 94.35 21.8 6.5 7.5 3291
123207321 288 78.42 94.04 10.5 3.1 13.3 3226
123208321 320 78.33 94.13 16.0 5.2 16.4 2391
123209321 224 78.32 94.04 60.2 11.6 22.6 1487
123210321 288 78.28 94.1 10.4 3.1 13.3 3062
123211321 256 78.25 94.1 10.7 2.5 12.5 3393
123212321 224 78.06 93.78 25.6 4.1 11.1 3450
123213321 224 78.0 93.99 25.6 4.4 11.9 3286
123214321 288 78.0 93.91 10.3 3.1 13.3 3297
123201321 224 77.98 93.75 16.8 2.7 10.1 3841
123216321 288 77.92 93.77 21.8 6.1 6.2 3609
123169321 160 77.88 93.71 44.6 4.0 8.3 3926
123208321 256 77.87 93.84 16.0 3.4 10.5 3772
123210321 256 77.86 93.79 10.4 2.4 10.5 4263
123164321 160 77.82 93.81 35.7 2.3 6.2 5238
123207321 256 77.81 93.82 10.5 2.4 10.5 4183
123177321 160 77.79 93.6 25.6 2.2 6.0 5329
123189321 160 77.73 93.32 25.0 2.2 7.4 5576
123224321 224 77.61 93.7 25.0 4.3 14.4 2944
123199321 224 77.59 93.61 16.8 2.7 10.2 3807
123226321 224 77.58 93.72 25.6 4.1 11.1 3455
123214321 256 77.44 93.56 10.3 2.4 10.5 4284
123228321 288 77.41 93.63 16.0 4.3 13.5 2907
123229321 224 77.38 93.54 44.6 7.8 16.2 2125
123203321 160 77.22 93.27 25.6 2.2 6.1 5982
123231321 288 77.17 93.47 10.3 3.1 13.3 3392
123232321 288 77.15 93.27 21.8 6.1 6.2 3615
123206321 224 77.1 93.37 21.8 3.9 4.5 5436
123234321 224 77.02 93.07 28.1 4.1 11.1 2952
123231321 256 76.78 93.13 10.3 2.4 10.5 4410
123228321 224 76.7 93.17 16.0 2.6 8.2 4859
123237321 288 76.5 93.35 21.8 6.1 6.2 3617
123216321 224 76.42 92.87 21.8 3.7 3.7 5984
123239321 288 76.35 93.18 16.0 3.9 12.2 3331
123240321 224 76.13 92.86 25.6 4.1 11.1 3457
123212321 160 75.96 92.5 25.6 2.1 5.7 6490
123232321 224 75.52 92.44 21.8 3.7 3.7 5991
123239321 224 75.3 92.58 16.0 2.4 7.4 5583
123237321 224 75.16 92.18 21.8 3.7 3.7 5994
123234321 160 75.1 92.08 28.1 2.1 5.7 5513
123246321 224 74.57 91.98 21.8 3.7 3.7 5984
123247321 288 73.81 91.83 11.7 3.4 5.4 5196
123248321 224 73.32 91.42 21.8 3.7 3.7 5979
123249321 224 73.28 91.73 11.7 1.8 2.5 10213
123250321 288 73.16 91.03 11.7 3.0 4.1 6050
123251321 224 72.98 91.11 21.8 3.7 3.7 5967
123252321 224 72.6 91.42 11.7 1.8 2.5 10213
123253321 288 72.37 90.59 11.7 3.0 4.1 6051
123254321 224 72.26 90.31 10.1 1.7 5.8 7026
123247321 224 72.26 90.68 11.7 2.1 3.3 8707
123250321 224 71.49 90.07 11.7 1.8 2.5 10187
123254321 176 71.31 89.69 10.1 1.1 3.6 10970
123258321 224 70.84 89.76 11.7 1.8 2.5 10210
123253321 224 70.64 89.47 11.7 1.8 2.5 10194
123251321 160 70.56 89.52 21.8 1.9 1.9 10737
123261321 224 69.76 89.07 11.7 1.8 2.5 10205
123262321 224 68.34 88.03 5.4 1.1 2.4 13079
123263321 224 68.25 88.17 11.7 1.8 2.5 10167
123262321 176 66.71 86.96 5.4 0.7 1.5 20327
123263321 160 65.66 86.26 11.7 0.9 1.3 18229

引用

@article{He2015,
  author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun},
  title = {Deep Residual Learning for Image Recognition},
  journal = {arXiv preprint arXiv:1512.03385},
  year = {2015}
}
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}