模型:
timm/regnety_080.ra3_in1k
RegNetY-8GF图像分类模型。由Ross Wightman在timm中对ImageNet-1k进行了训练。
timm的RegNet实现包括其他实现中没有的一些增强功能,包括:
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('regnety_080.ra3_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'regnety_080.ra3_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 32, 112, 112]) # torch.Size([1, 168, 56, 56]) # torch.Size([1, 448, 28, 28]) # torch.Size([1, 896, 14, 14]) # torch.Size([1, 2016, 7, 7]) print(o.shape)
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'regnety_080.ra3_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 2016, 7, 7) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor
在timm中探索此模型的数据集和运行时指标: model results 。
对于下面的比较摘要,ra_in1k、ra3_in1k、ch_in1k、sw_*和lion_*标记的权重是在timm中训练的。
model | img_size | top1 | top5 | param_count | gmacs | macts |
---|---|---|---|---|---|---|
1238321 | 384 | 88.228 | 98.684 | 644.81 | 374.99 | 210.2 |
1239321 | 384 | 86.84 | 98.364 | 145.05 | 95.0 | 88.87 |
12310321 | 384 | 86.024 | 98.05 | 83.59 | 46.87 | 67.67 |
12311321 | 288 | 86.004 | 97.83 | 83.59 | 26.37 | 38.07 |
12312321 | 224 | 85.996 | 97.848 | 644.81 | 127.66 | 71.58 |
12313321 | 288 | 85.982 | 97.844 | 83.59 | 26.37 | 38.07 |
12311321 | 224 | 85.574 | 97.666 | 83.59 | 15.96 | 23.04 |
12313321 | 224 | 85.564 | 97.674 | 83.59 | 15.96 | 23.04 |
12316321 | 288 | 85.398 | 97.584 | 51.82 | 20.06 | 35.34 |
12317321 | 384 | 85.15 | 97.436 | 1282.6 | 747.83 | 296.49 |
12318321 | 320 | 85.036 | 97.268 | 57.7 | 15.46 | 63.94 |
12316321 | 224 | 84.976 | 97.416 | 51.82 | 12.14 | 21.38 |
12320321 | 224 | 84.56 | 97.446 | 145.05 | 32.34 | 30.26 |
12321321 | 320 | 84.496 | 97.004 | 28.94 | 6.43 | 37.94 |
12318321 | 256 | 84.436 | 97.02 | 57.7 | 9.91 | 40.94 |
12323321 | 384 | 84.432 | 97.092 | 644.81 | 374.99 | 210.2 |
12324321 | 320 | 84.246 | 96.93 | 27.12 | 6.35 | 37.78 |
12325321 | 320 | 84.054 | 96.992 | 23.37 | 6.19 | 37.08 |
12326321 | 320 | 84.038 | 96.992 | 23.46 | 7.03 | 38.92 |
12327321 | 320 | 84.022 | 96.866 | 27.58 | 9.33 | 37.08 |
12328321 | 288 | 83.932 | 96.888 | 39.18 | 13.22 | 29.69 |
12329321 | 384 | 83.912 | 96.924 | 281.38 | 188.47 | 124.83 |
12330321 | 224 | 83.778 | 97.286 | 83.59 | 15.96 | 23.04 |
12321321 | 256 | 83.776 | 96.704 | 28.94 | 4.12 | 24.29 |
12332321 | 288 | 83.72 | 96.75 | 30.58 | 10.55 | 27.11 |
12333321 | 288 | 83.718 | 96.724 | 30.58 | 10.56 | 27.11 |
12334321 | 288 | 83.69 | 96.778 | 83.59 | 26.37 | 38.07 |
12324321 | 256 | 83.62 | 96.704 | 27.12 | 4.06 | 24.19 |
12325321 | 256 | 83.438 | 96.776 | 23.37 | 3.97 | 23.74 |
12327321 | 256 | 83.424 | 96.632 | 27.58 | 5.98 | 23.74 |
12326321 | 256 | 83.36 | 96.636 | 23.46 | 4.5 | 24.92 |
12339321 | 384 | 83.35 | 96.71 | 145.05 | 95.0 | 88.87 |
12340321 | 288 | 83.204 | 96.66 | 20.64 | 6.6 | 20.3 |
12341321 | 224 | 83.162 | 96.42 | 145.05 | 32.34 | 30.26 |
12328321 | 224 | 83.16 | 96.486 | 39.18 | 8.0 | 17.97 |
12332321 | 224 | 83.108 | 96.458 | 30.58 | 6.39 | 16.41 |
12344321 | 288 | 83.044 | 96.5 | 20.65 | 6.61 | 20.3 |
12333321 | 224 | 83.02 | 96.292 | 30.58 | 6.39 | 16.41 |
12334321 | 224 | 82.974 | 96.502 | 83.59 | 15.96 | 23.04 |
12347321 | 224 | 82.816 | 96.208 | 107.81 | 31.81 | 36.3 |
12348321 | 288 | 82.742 | 96.418 | 19.44 | 5.29 | 18.61 |
12349321 | 224 | 82.634 | 96.22 | 83.59 | 15.96 | 23.04 |
12350321 | 320 | 82.634 | 96.472 | 13.49 | 3.86 | 25.88 |
12351321 | 224 | 82.592 | 96.246 | 39.38 | 8.51 | 19.73 |
12352321 | 224 | 82.564 | 96.052 | 54.28 | 15.99 | 25.52 |
12353321 | 320 | 82.51 | 96.358 | 13.46 | 3.92 | 25.88 |
12340321 | 224 | 82.44 | 96.198 | 20.64 | 4.0 | 12.29 |
12344321 | 224 | 82.304 | 96.078 | 20.65 | 4.0 | 12.29 |
12353321 | 256 | 82.16 | 96.048 | 13.46 | 2.51 | 16.57 |
12350321 | 256 | 81.936 | 96.15 | 13.49 | 2.48 | 16.57 |
12348321 | 224 | 81.924 | 95.988 | 19.44 | 3.2 | 11.26 |
12359321 | 224 | 81.77 | 95.842 | 19.44 | 3.2 | 11.26 |
12360321 | 224 | 81.552 | 95.544 | 39.57 | 8.02 | 14.06 |
12361321 | 224 | 80.924 | 95.27 | 15.3 | 3.2 | 11.37 |
12362321 | 224 | 80.804 | 95.246 | 145.05 | 32.34 | 30.26 |
12363321 | 288 | 80.712 | 95.47 | 9.72 | 2.39 | 16.43 |
12364321 | 224 | 80.66 | 95.334 | 11.2 | 1.63 | 8.04 |
12365321 | 224 | 80.37 | 95.12 | 51.82 | 12.14 | 21.38 |
12366321 | 224 | 80.288 | 94.964 | 83.59 | 15.96 | 23.04 |
12367321 | 224 | 80.246 | 95.01 | 107.81 | 31.81 | 36.3 |
12368321 | 224 | 79.882 | 94.834 | 39.18 | 8.0 | 17.97 |
12363321 | 224 | 79.872 | 94.974 | 9.72 | 1.45 | 9.95 |
12370321 | 224 | 79.862 | 94.828 | 54.28 | 15.99 | 25.52 |
12371321 | 224 | 79.716 | 94.772 | 30.58 | 6.39 | 16.41 |
12372321 | 224 | 79.592 | 94.738 | 46.11 | 12.13 | 21.37 |
12373321 | 224 | 79.44 | 94.772 | 9.19 | 1.62 | 7.93 |
12374321 | 224 | 79.23 | 94.654 | 20.65 | 4.0 | 12.29 |
12375321 | 224 | 79.198 | 94.55 | 39.57 | 8.02 | 14.06 |
12376321 | 224 | 79.064 | 94.454 | 26.21 | 6.49 | 16.37 |
12377321 | 224 | 78.884 | 94.412 | 19.44 | 3.2 | 11.26 |
12378321 | 224 | 78.654 | 94.388 | 6.43 | 0.84 | 5.42 |
12379321 | 224 | 78.482 | 94.24 | 22.12 | 3.99 | 12.2 |
12380321 | 224 | 78.178 | 94.08 | 15.3 | 3.2 | 11.37 |
12381321 | 224 | 77.862 | 93.73 | 11.2 | 1.63 | 8.04 |
12382321 | 224 | 77.302 | 93.672 | 7.26 | 0.81 | 5.15 |
12383321 | 224 | 76.908 | 93.418 | 9.19 | 1.62 | 7.93 |
12384321 | 224 | 76.296 | 93.05 | 6.26 | 0.81 | 5.25 |
12385321 | 224 | 75.592 | 92.712 | 4.34 | 0.41 | 3.89 |
12386321 | 224 | 75.244 | 92.518 | 6.06 | 0.61 | 4.33 |
12387321 | 224 | 75.042 | 92.342 | 7.26 | 0.81 | 5.15 |
12388321 | 224 | 74.57 | 92.184 | 5.5 | 0.42 | 3.17 |
12389321 | 224 | 74.018 | 91.764 | 4.34 | 0.41 | 3.89 |
12390321 | 224 | 73.862 | 91.67 | 6.2 | 0.61 | 3.98 |
12391321 | 224 | 72.38 | 90.832 | 5.16 | 0.4 | 3.14 |
12392321 | 224 | 70.282 | 89.534 | 3.16 | 0.2 | 2.17 |
12393321 | 224 | 68.752 | 88.556 | 2.68 | 0.2 | 2.16 |
@InProceedings{Radosavovic2020, title = {Designing Network Design Spaces}, author = {Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He and Piotr Doll{'a}r}, booktitle = {CVPR}, year = {2020} }
@misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} }