模型:
timm/nasnetalarge.tf_in1k
一个 NasNet 图像分类模型。由论文作者在 ImageNet-1k 上进行训练。通过 Cadene 的 pretrained-models.pytorch 转换自 Tensorflow。
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('nasnetalarge.tf_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'nasnetalarge.tf_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 96, 165, 165]) # torch.Size([1, 168, 83, 83]) # torch.Size([1, 1008, 42, 42]) # torch.Size([1, 2016, 21, 21]) # torch.Size([1, 4032, 11, 11]) print(o.shape)
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'nasnetalarge.tf_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 4032, 11, 11) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor
在 timm 中探索此模型的数据集和运行时度量。 model results
@misc{zoph2018learning, title={Learning Transferable Architectures for Scalable Image Recognition}, author={Barret Zoph and Vijay Vasudevan and Jonathon Shlens and Quoc V. Le}, year={2018}, eprint={1707.07012}, archivePrefix={arXiv}, primaryClass={cs.CV} }