英文

maxxvitv2_rmlp_base_rw_224.sw_in12k模型卡片

这是一个基于timm的特定MaxxViT-V2模型,使用了一个MLP Log-CPB(受Swin-V2启发的连续对数坐标相对位置偏差)进行图像分类模型。该模型在ImageNet-12k上(完整的ImageNet-22k的11821类子集)由Ross Wightman在timm上进行训练。

maxxvit.py 个模型变体

MaxxViT包含了许多相关的模型架构,它们共享一个共同的结构,包括:

  • CoAtNet-在早期阶段将MBConv(深度可分离)卷积块与后期的自注意力变换块相结合。
  • MaxViT-在所有阶段都使用统一的块,每个块包含一个MBConv(深度可分离)卷积块,后面是两个具有不同分区方案的自注意力块(窗口后跟网格)。
  • CoAtNeXt-这是一个使用ConvNeXt块替换CoAtNet中的MBConv块的特定于timm的架构。所有标准化层都是LayerNorm(没有BatchNorm)。
  • MaxxViT-这是一个使用ConvNeXt块替换MaxViT中的MBConv块的特定于timm的架构。所有标准化层都是LayerNorm(没有BatchNorm)。
  • MaxxViT-V2-这是MaxxViT的一个变体,它删除了窗口块注意力,只留下ConvNeXt块和网格注意力,并通过增加宽度来进行补偿。

除了上述主要变体之外,还有从模型到模型的更微小的变化。带有字符串rw的任何模型名称都是timm特定的配置,具有旨在支持PyTorch eager使用的建模调整。这些模型是在训练初始的模型重现时创建的,因此存在差异。所有带有字符串tf的模型都是与原始论文作者基于Tensorflow的模型完全匹配的模型,其权重已转移到PyTorch。这涵盖了许多MaxViT模型。官方的CoAtNet模型从未发布过。

模型详细信息

模型用法

图像分类

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('maxxvitv2_rmlp_base_rw_224.sw_in12k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

特征图提取

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'maxxvitv2_rmlp_base_rw_224.sw_in12k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 128, 112, 112])
    #  torch.Size([1, 128, 56, 56])
    #  torch.Size([1, 256, 28, 28])
    #  torch.Size([1, 512, 14, 14])
    #  torch.Size([1, 1024, 7, 7])

    print(o.shape)

图像嵌入

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'maxxvitv2_rmlp_base_rw_224.sw_in12k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 1024, 7, 7) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

模型比较

按Top-1排序

model top1 top5 samples / sec Params (M) GMAC Act (M)
12310321 88.53 98.64 21.76 475.77 534.14 1413.22
12311321 88.32 98.54 42.53 475.32 292.78 668.76
12312321 88.20 98.53 50.87 119.88 138.02 703.99
12313321 88.04 98.40 36.42 212.33 244.75 942.15
12314321 87.98 98.56 71.75 212.03 132.55 445.84
12315321 87.92 98.54 104.71 119.65 73.80 332.90
12316321 87.81 98.37 106.55 116.14 70.97 318.95
12317321 87.47 98.37 149.49 116.09 72.98 213.74
12318321 87.39 98.31 160.80 73.88 47.69 209.43
12319321 86.89 98.02 375.86 116.14 23.15 92.64
12320321 86.64 98.02 501.03 116.09 24.20 62.77
12321321 86.60 97.92 50.75 119.88 138.02 703.99
12322321 86.57 97.89 631.88 73.87 15.09 49.22
12323321 86.52 97.88 36.04 212.33 244.75 942.15
12324321 86.49 97.90 620.58 73.88 15.18 54.78
12325321 86.29 97.80 101.09 119.65 73.80 332.90
12326321 86.23 97.69 70.56 212.03 132.55 445.84
12327321 86.10 97.76 88.63 69.13 67.26 383.77
12328321 85.67 97.58 144.25 31.05 33.49 257.59
12329321 85.54 97.46 188.35 69.02 35.87 183.65
12330321 85.11 97.38 293.46 30.98 17.53 123.42
12331321 84.93 96.97 247.71 211.79 43.68 127.35
12332321 84.90 96.96 1025.45 41.72 8.11 40.13
12333321 84.85 96.99 358.25 119.47 24.04 95.01
12334321 84.63 97.06 575.53 66.01 14.67 58.38
12335321 84.61 96.74 625.81 73.88 15.18 54.78
12336321 84.49 96.76 693.82 64.90 10.75 49.30
12337321 84.43 96.83 647.96 68.93 11.66 53.17
12338321 84.23 96.78 807.21 29.15 6.77 46.92
12339321 83.62 96.38 989.59 41.72 8.04 34.60
12340321 83.50 96.50 1100.53 29.06 5.11 33.11
12341321 83.41 96.59 1004.94 30.92 5.60 35.78
12342321 83.36 96.45 1093.03 41.69 7.85 35.47
12343321 83.11 96.33 1276.88 23.70 6.26 23.05
12344321 83.03 96.34 1341.24 16.78 4.37 26.05
12345321 82.96 96.26 1283.24 15.50 4.47 31.92
12346321 82.93 96.23 1218.17 15.45 4.46 30.28
12347321 82.39 96.19 1600.14 27.44 4.67 22.04
12348321 82.39 95.84 1831.21 27.44 4.43 18.73
12349321 82.05 95.87 2109.09 15.15 2.62 20.34
12350321 81.95 95.92 2525.52 14.70 2.47 12.80
12351321 81.70 95.64 2344.52 15.14 2.41 15.41
12352321 80.53 95.21 1594.71 7.52 1.85 24.86

按吞吐量(样本/秒)排序

model top1 top5 samples / sec Params (M) GMAC Act (M)
12350321 81.95 95.92 2525.52 14.70 2.47 12.80
12351321 81.70 95.64 2344.52 15.14 2.41 15.41
12349321 82.05 95.87 2109.09 15.15 2.62 20.34
12348321 82.39 95.84 1831.21 27.44 4.43 18.73
12347321 82.39 96.19 1600.14 27.44 4.67 22.04
12352321 80.53 95.21 1594.71 7.52 1.85 24.86
12344321 83.03 96.34 1341.24 16.78 4.37 26.05
12345321 82.96 96.26 1283.24 15.50 4.47 31.92
12343321 83.11 96.33 1276.88 23.70 6.26 23.05
12346321 82.93 96.23 1218.17 15.45 4.46 30.28
12340321 83.50 96.50 1100.53 29.06 5.11 33.11
12342321 83.36 96.45 1093.03 41.69 7.85 35.47
12332321 84.90 96.96 1025.45 41.72 8.11 40.13
12341321 83.41 96.59 1004.94 30.92 5.60 35.78
12339321 83.62 96.38 989.59 41.72 8.04 34.60
12338321 84.23 96.78 807.21 29.15 6.77 46.92
12336321 84.49 96.76 693.82 64.90 10.75 49.30
12337321 84.43 96.83 647.96 68.93 11.66 53.17
12322321 86.57 97.89 631.88 73.87 15.09 49.22
12335321 84.61 96.74 625.81 73.88 15.18 54.78
12324321 86.49 97.90 620.58 73.88 15.18 54.78
12334321 84.63 97.06 575.53 66.01 14.67 58.38
12320321 86.64 98.02 501.03 116.09 24.20 62.77
12319321 86.89 98.02 375.86 116.14 23.15 92.64
12333321 84.85 96.99 358.25 119.47 24.04 95.01
12330321 85.11 97.38 293.46 30.98 17.53 123.42
12331321 84.93 96.97 247.71 211.79 43.68 127.35
12329321 85.54 97.46 188.35 69.02 35.87 183.65
12318321 87.39 98.31 160.80 73.88 47.69 209.43
12317321 87.47 98.37 149.49 116.09 72.98 213.74
12328321 85.67 97.58 144.25 31.05 33.49 257.59
12316321 87.81 98.37 106.55 116.14 70.97 318.95
12315321 87.92 98.54 104.71 119.65 73.80 332.90
12325321 86.29 97.80 101.09 119.65 73.80 332.90
12327321 86.10 97.76 88.63 69.13 67.26 383.77
12314321 87.98 98.56 71.75 212.03 132.55 445.84
12326321 86.23 97.69 70.56 212.03 132.55 445.84
12312321 88.20 98.53 50.87 119.88 138.02 703.99
12321321 86.60 97.92 50.75 119.88 138.02 703.99
12311321 88.32 98.54 42.53 475.32 292.78 668.76
12313321 88.04 98.40 36.42 212.33 244.75 942.15
12323321 86.52 97.88 36.04 212.33 244.75 942.15
12310321 88.53 98.64 21.76 475.77 534.14 1413.22

引用

@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
@article{tu2022maxvit,
  title={MaxViT: Multi-Axis Vision Transformer},
  author={Tu, Zhengzhong and Talebi, Hossein and Zhang, Han and Yang, Feng and Milanfar, Peyman and Bovik, Alan and Li, Yinxiao},
  journal={ECCV},
  year={2022},
}        
@article{dai2021coatnet,
  title={CoAtNet: Marrying Convolution and Attention for All Data Sizes},
  author={Dai, Zihang and Liu, Hanxiao and Le, Quoc V and Tan, Mingxing},
  journal={arXiv preprint arXiv:2106.04803},
  year={2021}
}