模型:
timm/hrnet_w18_ssld.paddle_in1k
一个HRNet图像分类模型。在Paddle Paddle上使用SSLD distillation在ImageNet-1k上进行训练。
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('hrnet_w18_ssld.paddle_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'hrnet_w18_ssld.paddle_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 2048, 7, 7) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor
在timm中探索该模型的数据集和运行时指标: model results
@article{WangSCJDZLMTWLX19, title={Deep High-Resolution Representation Learning for Visual Recognition}, author={Jingdong Wang and Ke Sun and Tianheng Cheng and Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao}, journal = {TPAMI} year={2019} }