模型:
timm/gcresnet50t.ra2_in1k
一种带有“全局上下文”关注机制的GC-ResNet图像分类模型(采用ResNet)。该模型具有三层分层的不带池化的前处理。由Ross Wightman在timm中使用ImageNet-1k数据集进行训练。
该模型架构使用了timm的灵活的 BYOBNet (Bring-Your-Own-Blocks Network) 实现。
BYOBNet允许配置:
...同时还包括timm其他许多架构的常见特性,包括:
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('gcresnet50t.ra2_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'gcresnet50t.ra2_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 32, 128, 128]) # torch.Size([1, 256, 64, 64]) # torch.Size([1, 512, 32, 32]) # torch.Size([1, 1024, 16, 16]) # torch.Size([1, 2048, 8, 8]) print(o.shape)
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'gcresnet50t.ra2_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 2048, 8, 8) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor
在timm中探索该模型的数据集和运行时指标: model results
@misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} }
@article{cao2019GCNet, title={GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond}, author={Cao, Yue and Xu, Jiarui and Lin, Stephen and Wei, Fangyun and Hu, Han}, journal={arXiv preprint arXiv:1904.11492}, year={2019} }
r