模型:

timm/edgenext_x_small.in1k

英文

edgenext_x_small.in1k模型卡片

一种EdgeNeXt图像分类模型,由论文作者在ImageNet-1k上进行训练。

模型详情

  • 模型类型:图像分类/特征骨干
  • 模型统计信息:
    • 参数(M):2.3
    • GMACs:0.5
    • 激活函数使用量(M):5.9
    • 图像大小:训练=256 x 256,测试=288 x 288
  • 论文:
  • 数据集:ImageNet-1k
  • 原始论文: https://github.com/mmaaz60/EdgeNeXt

模型用途

图像分类

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('edgenext_x_small.in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

特征图提取

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'edgenext_x_small.in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 32, 64, 64])
    #  torch.Size([1, 64, 32, 32])
    #  torch.Size([1, 100, 16, 16])
    #  torch.Size([1, 192, 8, 8])

    print(o.shape)

图像嵌入

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'edgenext_x_small.in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 192, 8, 8) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

引用

@inproceedings{Maaz2022EdgeNeXt,
  title={EdgeNeXt: Efficiently Amalgamated CNN-Transformer Architecture for Mobile Vision Applications},
    author={Muhammad Maaz and Abdelrahman Shaker and Hisham Cholakkal and Salman Khan and Syed Waqas Zamir and Rao Muhammad Anwer and Fahad Shahbaz Khan},
  booktitle={International Workshop on Computational Aspects of Deep Learning at 17th European Conference on Computer Vision (CADL2022)},
  year={2022},
  organization={Springer}
}