模型:

timm/eca_resnet33ts.ra2_in1k

英文

eca_resnet33ts.ra2_in1k的模型卡片

一个ECA-ResNet图像分类模型(ResNet具有“高效通道注意力”)。该模型具有三层阶梯式的非池化和SiLU激活。由Ross Wightman在timm中使用ImageNet-1k进行训练。

该模型架构使用timm的灵活 BYOBNet (Bring-Your-Own-Blocks Network) 实现。

BYOBNet允许配置:

  • 块/阶段布局
  • 干细胞布局
  • 输出步幅(膨胀)
  • 激活和规范化层
  • 通道、空间/自注意层

...还包括timm的许多其他架构共有的功能,包括:

  • 随机深度
  • 梯度检查点
  • 层级学习率衰减
  • 逐阶段特征提取

模型详情

模型用途

图像分类

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('eca_resnet33ts.ra2_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

特征图提取

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'eca_resnet33ts.ra2_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 32, 128, 128])
    #  torch.Size([1, 256, 64, 64])
    #  torch.Size([1, 512, 32, 32])
    #  torch.Size([1, 1536, 16, 16])
    #  torch.Size([1, 1280, 8, 8])

    print(o.shape)

图像嵌入

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'eca_resnet33ts.ra2_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 1280, 8, 8) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

模型比较

在timm model results 中探索该模型的数据集和运行时指标。

引用

@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
@InProceedings{wang2020eca,
  title={ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks},
  author={Qilong Wang, Banggu Wu, Pengfei Zhu, Peihua Li, Wangmeng Zuo and Qinghua Hu},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2020}
}
r