模型:
timm/eca_nfnet_l2.ra3_in1k
ECA-NFNet-Lite(轻量级 ECA 注意力的 NFNet)图像分类模型。由 Ross Wightman 在 timm 中训练。
标准化自由网络(Normalization Free Networks)是(预激活的)类 ResNet 模型,没有任何标准化层。它们使用缩放的权重标准化,并根据信号传播分析在残差路径和非线性方面特别放置标量增益,而不是使用批标准化或替代方法。
Lightweight NFNets 是 timm 的特定变体,将 SE 和瓶颈比例从 0.5 改为 0.25(降低宽度),并在保持相同深度的同时使用更小的分组大小。使用 SiLU 激活函数代替 GELU。
此 NFNet 变体还使用了 ECA(高效通道注意力),而不是 SE(Squeeze-and-Excitation)。
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('eca_nfnet_l2.ra3_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'eca_nfnet_l2.ra3_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 64, 160, 160]) # torch.Size([1, 256, 80, 80]) # torch.Size([1, 512, 40, 40]) # torch.Size([1, 1536, 20, 20]) # torch.Size([1, 3072, 10, 10]) print(o.shape)
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'eca_nfnet_l2.ra3_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 3072, 10, 10) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor
在 timm 中探索此模型的数据集和运行时指标 model results 。
@article{brock2021high, author={Andrew Brock and Soham De and Samuel L. Smith and Karen Simonyan}, title={High-Performance Large-Scale Image Recognition Without Normalization}, journal={arXiv preprint arXiv:2102.06171}, year={2021} }
@inproceedings{brock2021characterizing, author={Andrew Brock and Soham De and Samuel L. Smith}, title={Characterizing signal propagation to close the performance gap in unnormalized ResNets}, booktitle={9th International Conference on Learning Representations, {ICLR}}, year={2021} }
@misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} }