模型:
timm/convnext_large_mlp.clip_laion2b_augreg_ft_in12k_384
任务:
许可:
ConvNeXt图像-文本训练特征表示模型。CLIP图像塔权重在LAION(由Ross Wightman提供的预训练数据集)上进行了 OpenCLIP 次预训练。
请参阅相关的OpenCLIP模型卡片,以获取有关预训练的更多详细信息:
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('convnext_large_mlp.clip_laion2b_augreg_ft_in12k_384', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'convnext_large_mlp.clip_laion2b_augreg_ft_in12k_384', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 192, 96, 96]) # torch.Size([1, 384, 48, 48]) # torch.Size([1, 768, 24, 24]) # torch.Size([1, 1536, 12, 12]) print(o.shape)
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'convnext_large_mlp.clip_laion2b_augreg_ft_in12k_384', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 1536, 12, 12) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor
在timm中探索该模型的数据集和运行时指标: model results
所有计时数据来自RTX 3090 w/ AMP上的eager model PyTorch 1.13。
model | top1 | top5 | img_size | param_count | gmacs | macts | samples_per_sec | batch_size |
---|---|---|---|---|---|---|---|---|
12318321 | 88.848 | 98.742 | 512 | 660.29 | 600.81 | 413.07 | 28.58 | 48 |
12319321 | 88.668 | 98.738 | 384 | 660.29 | 337.96 | 232.35 | 50.56 | 64 |
12320321 | 88.612 | 98.704 | 256 | 846.47 | 198.09 | 124.45 | 122.45 | 256 |
12321321 | 88.312 | 98.578 | 384 | 200.13 | 101.11 | 126.74 | 196.84 | 256 |
12322321 | 88.196 | 98.532 | 384 | 197.96 | 101.1 | 126.74 | 128.94 | 128 |
12323321 | 87.968 | 98.47 | 320 | 200.13 | 70.21 | 88.02 | 283.42 | 256 |
12324321 | 87.75 | 98.556 | 384 | 350.2 | 179.2 | 168.99 | 124.85 | 192 |
12325321 | 87.646 | 98.422 | 384 | 88.72 | 45.21 | 84.49 | 209.51 | 256 |
12326321 | 87.476 | 98.382 | 384 | 197.77 | 101.1 | 126.74 | 194.66 | 256 |
12327321 | 87.344 | 98.218 | 256 | 200.13 | 44.94 | 56.33 | 438.08 | 256 |
12328321 | 87.26 | 98.248 | 224 | 197.96 | 34.4 | 43.13 | 376.84 | 256 |
12329321 | 87.138 | 98.212 | 384 | 88.59 | 45.21 | 84.49 | 365.47 | 256 |
12330321 | 87.002 | 98.208 | 224 | 350.2 | 60.98 | 57.5 | 368.01 | 256 |
12331321 | 86.796 | 98.264 | 384 | 88.59 | 45.21 | 84.49 | 366.54 | 256 |
12332321 | 86.74 | 98.022 | 224 | 88.72 | 15.38 | 28.75 | 624.23 | 256 |
12333321 | 86.636 | 98.028 | 224 | 197.77 | 34.4 | 43.13 | 581.43 | 256 |
12334321 | 86.504 | 97.97 | 384 | 88.59 | 45.21 | 84.49 | 368.14 | 256 |
12335321 | 86.344 | 97.97 | 256 | 88.59 | 20.09 | 37.55 | 816.14 | 256 |
12336321 | 86.256 | 97.75 | 224 | 660.29 | 115.0 | 79.07 | 154.72 | 256 |
12337321 | 86.182 | 97.92 | 384 | 50.22 | 25.58 | 63.37 | 516.19 | 256 |
12338321 | 86.154 | 97.68 | 256 | 88.59 | 20.09 | 37.55 | 819.86 | 256 |
12339321 | 85.822 | 97.866 | 224 | 88.59 | 15.38 | 28.75 | 1037.66 | 256 |
12340321 | 85.778 | 97.886 | 384 | 50.22 | 25.58 | 63.37 | 518.95 | 256 |
12341321 | 85.742 | 97.584 | 224 | 197.96 | 34.4 | 43.13 | 375.23 | 256 |
12342321 | 85.174 | 97.506 | 224 | 50.22 | 8.71 | 21.56 | 1474.31 | 256 |
12343321 | 85.118 | 97.608 | 384 | 28.59 | 13.14 | 39.48 | 856.76 | 256 |
12344321 | 85.112 | 97.63 | 384 | 28.64 | 13.14 | 39.48 | 491.32 | 256 |
12345321 | 84.874 | 97.09 | 224 | 88.72 | 15.38 | 28.75 | 625.33 | 256 |
12346321 | 84.562 | 97.394 | 224 | 50.22 | 8.71 | 21.56 | 1478.29 | 256 |
12347321 | 84.282 | 96.892 | 224 | 197.77 | 34.4 | 43.13 | 584.28 | 256 |
12348321 | 84.186 | 97.124 | 224 | 28.59 | 4.47 | 13.44 | 2433.7 | 256 |
12349321 | 84.084 | 97.14 | 384 | 28.59 | 13.14 | 39.48 | 862.95 | 256 |
12350321 | 83.894 | 96.964 | 224 | 28.64 | 4.47 | 13.44 | 1452.72 | 256 |
12351321 | 83.82 | 96.746 | 224 | 88.59 | 15.38 | 28.75 | 1054.0 | 256 |
12352321 | 83.37 | 96.742 | 384 | 15.62 | 7.22 | 24.61 | 801.72 | 256 |
12353321 | 83.142 | 96.434 | 224 | 50.22 | 8.71 | 21.56 | 1464.0 | 256 |
12354321 | 82.92 | 96.284 | 224 | 28.64 | 4.47 | 13.44 | 1425.62 | 256 |
12355321 | 82.898 | 96.616 | 224 | 28.59 | 4.47 | 13.44 | 2480.88 | 256 |
12356321 | 82.282 | 96.344 | 224 | 15.59 | 2.46 | 8.37 | 3926.52 | 256 |
12357321 | 82.216 | 95.852 | 224 | 28.59 | 4.47 | 13.44 | 2529.75 | 256 |
12358321 | 82.066 | 95.854 | 224 | 28.59 | 4.47 | 13.44 | 2346.26 | 256 |
12359321 | 82.03 | 96.166 | 224 | 15.62 | 2.46 | 8.37 | 2300.18 | 256 |
12360321 | 81.83 | 95.738 | 224 | 15.62 | 2.46 | 8.37 | 2321.48 | 256 |
12361321 | 80.866 | 95.246 | 224 | 15.65 | 2.65 | 9.38 | 3523.85 | 256 |
12362321 | 80.768 | 95.334 | 224 | 15.59 | 2.46 | 8.37 | 3915.58 | 256 |
12363321 | 80.304 | 95.072 | 224 | 9.07 | 1.37 | 6.1 | 3274.57 | 256 |
12364321 | 79.526 | 94.558 | 224 | 9.05 | 1.37 | 6.1 | 5686.88 | 256 |
12365321 | 79.522 | 94.692 | 224 | 9.06 | 1.43 | 6.5 | 5422.46 | 256 |
12366321 | 78.488 | 93.98 | 224 | 5.23 | 0.79 | 4.57 | 4264.2 | 256 |
12367321 | 77.86 | 93.83 | 224 | 5.23 | 0.82 | 4.87 | 6910.6 | 256 |
12368321 | 77.454 | 93.68 | 224 | 5.22 | 0.79 | 4.57 | 7189.92 | 256 |
12369321 | 76.664 | 93.044 | 224 | 3.71 | 0.55 | 3.81 | 4728.91 | 256 |
12370321 | 75.88 | 92.846 | 224 | 3.7 | 0.58 | 4.11 | 7963.16 | 256 |
12371321 | 75.664 | 92.9 | 224 | 3.7 | 0.55 | 3.81 | 8439.22 | 256 |
@software{ilharco_gabriel_2021_5143773, author = {Ilharco, Gabriel and Wortsman, Mitchell and Wightman, Ross and Gordon, Cade and Carlini, Nicholas and Taori, Rohan and Dave, Achal and Shankar, Vaishaal and Namkoong, Hongseok and Miller, John and Hajishirzi, Hannaneh and Farhadi, Ali and Schmidt, Ludwig}, title = {OpenCLIP}, month = jul, year = 2021, note = {If you use this software, please cite it as below.}, publisher = {Zenodo}, version = {0.1}, doi = {10.5281/zenodo.5143773}, url = {https://doi.org/10.5281/zenodo.5143773} }
@inproceedings{schuhmann2022laionb, title={{LAION}-5B: An open large-scale dataset for training next generation image-text models}, author={Christoph Schuhmann and Romain Beaumont and Richard Vencu and Cade W Gordon and Ross Wightman and Mehdi Cherti and Theo Coombes and Aarush Katta and Clayton Mullis and Mitchell Wortsman and Patrick Schramowski and Srivatsa R Kundurthy and Katherine Crowson and Ludwig Schmidt and Robert Kaczmarczyk and Jenia Jitsev}, booktitle={Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track}, year={2022}, url={https://openreview.net/forum?id=M3Y74vmsMcY} }
@misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} }
@inproceedings{Radford2021LearningTV, title={Learning Transferable Visual Models From Natural Language Supervision}, author={Alec Radford and Jong Wook Kim and Chris Hallacy and A. Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever}, booktitle={ICML}, year={2021} }
@article{liu2022convnet, author = {Zhuang Liu and Hanzi Mao and Chao-Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie}, title = {A ConvNet for the 2020s}, journal = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2022}, }