模型:
timm/convnext_base.clip_laiona_augreg_ft_in1k_384
一种 ConvNeXt 图像分类模型。由 Ross Wightman 在 timm 中,使用 LAION 数据集进行 CLIP 图像塔权重的预训练,然后在 ImageNet-1k 上进行微调。
有关预训练的详细信息,请参阅相关的 OpenCLIP 模型卡片:
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('convnext_base.clip_laiona_augreg_ft_in1k_384', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'convnext_base.clip_laiona_augreg_ft_in1k_384', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 128, 96, 96]) # torch.Size([1, 256, 48, 48]) # torch.Size([1, 512, 24, 24]) # torch.Size([1, 1024, 12, 12]) print(o.shape)
from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'convnext_base.clip_laiona_augreg_ft_in1k_384', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 1024, 12, 12) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor
在 timm 中探索该模型的数据集和运行时度量。 model results
所有定时数据来自 RTX 3090 的 eager 模型 PyTorch 1.13 上的 AMP。
model | top1 | top5 | img_size | param_count | gmacs | macts | samples_per_sec | batch_size |
---|---|---|---|---|---|---|---|---|
12318321 | 88.848 | 98.742 | 512 | 660.29 | 600.81 | 413.07 | 28.58 | 48 |
12319321 | 88.668 | 98.738 | 384 | 660.29 | 337.96 | 232.35 | 50.56 | 64 |
12320321 | 88.612 | 98.704 | 256 | 846.47 | 198.09 | 124.45 | 122.45 | 256 |
12321321 | 88.312 | 98.578 | 384 | 200.13 | 101.11 | 126.74 | 196.84 | 256 |
12322321 | 88.196 | 98.532 | 384 | 197.96 | 101.1 | 126.74 | 128.94 | 128 |
12323321 | 87.968 | 98.47 | 320 | 200.13 | 70.21 | 88.02 | 283.42 | 256 |
12324321 | 87.75 | 98.556 | 384 | 350.2 | 179.2 | 168.99 | 124.85 | 192 |
12325321 | 87.646 | 98.422 | 384 | 88.72 | 45.21 | 84.49 | 209.51 | 256 |
12326321 | 87.476 | 98.382 | 384 | 197.77 | 101.1 | 126.74 | 194.66 | 256 |
12327321 | 87.344 | 98.218 | 256 | 200.13 | 44.94 | 56.33 | 438.08 | 256 |
12328321 | 87.26 | 98.248 | 224 | 197.96 | 34.4 | 43.13 | 376.84 | 256 |
12329321 | 87.138 | 98.212 | 384 | 88.59 | 45.21 | 84.49 | 365.47 | 256 |
12330321 | 87.002 | 98.208 | 224 | 350.2 | 60.98 | 57.5 | 368.01 | 256 |
12331321 | 86.796 | 98.264 | 384 | 88.59 | 45.21 | 84.49 | 366.54 | 256 |
12332321 | 86.74 | 98.022 | 224 | 88.72 | 15.38 | 28.75 | 624.23 | 256 |
12333321 | 86.636 | 98.028 | 224 | 197.77 | 34.4 | 43.13 | 581.43 | 256 |
12334321 | 86.504 | 97.97 | 384 | 88.59 | 45.21 | 84.49 | 368.14 | 256 |
12335321 | 86.344 | 97.97 | 256 | 88.59 | 20.09 | 37.55 | 816.14 | 256 |
12336321 | 86.256 | 97.75 | 224 | 660.29 | 115.0 | 79.07 | 154.72 | 256 |
12337321 | 86.182 | 97.92 | 384 | 50.22 | 25.58 | 63.37 | 516.19 | 256 |
12338321 | 86.154 | 97.68 | 256 | 88.59 | 20.09 | 37.55 | 819.86 | 256 |
12339321 | 85.822 | 97.866 | 224 | 88.59 | 15.38 | 28.75 | 1037.66 | 256 |
12340321 | 85.778 | 97.886 | 384 | 50.22 | 25.58 | 63.37 | 518.95 | 256 |
12341321 | 85.742 | 97.584 | 224 | 197.96 | 34.4 | 43.13 | 375.23 | 256 |
12342321 | 85.174 | 97.506 | 224 | 50.22 | 8.71 | 21.56 | 1474.31 | 256 |
12343321 | 85.118 | 97.608 | 384 | 28.59 | 13.14 | 39.48 | 856.76 | 256 |
12344321 | 85.112 | 97.63 | 384 | 28.64 | 13.14 | 39.48 | 491.32 | 256 |
12345321 | 84.874 | 97.09 | 224 | 88.72 | 15.38 | 28.75 | 625.33 | 256 |
12346321 | 84.562 | 97.394 | 224 | 50.22 | 8.71 | 21.56 | 1478.29 | 256 |
12347321 | 84.282 | 96.892 | 224 | 197.77 | 34.4 | 43.13 | 584.28 | 256 |
12348321 | 84.186 | 97.124 | 224 | 28.59 | 4.47 | 13.44 | 2433.7 | 256 |
12349321 | 84.084 | 97.14 | 384 | 28.59 | 13.14 | 39.48 | 862.95 | 256 |
12350321 | 83.894 | 96.964 | 224 | 28.64 | 4.47 | 13.44 | 1452.72 | 256 |
12351321 | 83.82 | 96.746 | 224 | 88.59 | 15.38 | 28.75 | 1054.0 | 256 |
12352321 | 83.37 | 96.742 | 384 | 15.62 | 7.22 | 24.61 | 801.72 | 256 |
12353321 | 83.142 | 96.434 | 224 | 50.22 | 8.71 | 21.56 | 1464.0 | 256 |
12354321 | 82.92 | 96.284 | 224 | 28.64 | 4.47 | 13.44 | 1425.62 | 256 |
12355321 | 82.898 | 96.616 | 224 | 28.59 | 4.47 | 13.44 | 2480.88 | 256 |
12356321 | 82.282 | 96.344 | 224 | 15.59 | 2.46 | 8.37 | 3926.52 | 256 |
12357321 | 82.216 | 95.852 | 224 | 28.59 | 4.47 | 13.44 | 2529.75 | 256 |
12358321 | 82.066 | 95.854 | 224 | 28.59 | 4.47 | 13.44 | 2346.26 | 256 |
12359321 | 82.03 | 96.166 | 224 | 15.62 | 2.46 | 8.37 | 2300.18 | 256 |
12360321 | 81.83 | 95.738 | 224 | 15.62 | 2.46 | 8.37 | 2321.48 | 256 |
12361321 | 80.866 | 95.246 | 224 | 15.65 | 2.65 | 9.38 | 3523.85 | 256 |
12362321 | 80.768 | 95.334 | 224 | 15.59 | 2.46 | 8.37 | 3915.58 | 256 |
12363321 | 80.304 | 95.072 | 224 | 9.07 | 1.37 | 6.1 | 3274.57 | 256 |
12364321 | 79.526 | 94.558 | 224 | 9.05 | 1.37 | 6.1 | 5686.88 | 256 |
12365321 | 79.522 | 94.692 | 224 | 9.06 | 1.43 | 6.5 | 5422.46 | 256 |
12366321 | 78.488 | 93.98 | 224 | 5.23 | 0.79 | 4.57 | 4264.2 | 256 |
12367321 | 77.86 | 93.83 | 224 | 5.23 | 0.82 | 4.87 | 6910.6 | 256 |
12368321 | 77.454 | 93.68 | 224 | 5.22 | 0.79 | 4.57 | 7189.92 | 256 |
12369321 | 76.664 | 93.044 | 224 | 3.71 | 0.55 | 3.81 | 4728.91 | 256 |
12370321 | 75.88 | 92.846 | 224 | 3.7 | 0.58 | 4.11 | 7963.16 | 256 |
12371321 | 75.664 | 92.9 | 224 | 3.7 | 0.55 | 3.81 | 8439.22 | 256 |
@software{ilharco_gabriel_2021_5143773, author = {Ilharco, Gabriel and Wortsman, Mitchell and Wightman, Ross and Gordon, Cade and Carlini, Nicholas and Taori, Rohan and Dave, Achal and Shankar, Vaishaal and Namkoong, Hongseok and Miller, John and Hajishirzi, Hannaneh and Farhadi, Ali and Schmidt, Ludwig}, title = {OpenCLIP}, month = jul, year = 2021, note = {If you use this software, please cite it as below.}, publisher = {Zenodo}, version = {0.1}, doi = {10.5281/zenodo.5143773}, url = {https://doi.org/10.5281/zenodo.5143773} }
@inproceedings{schuhmann2022laionb, title={{LAION}-5B: An open large-scale dataset for training next generation image-text models}, author={Christoph Schuhmann and Romain Beaumont and Richard Vencu and Cade W Gordon and Ross Wightman and Mehdi Cherti and Theo Coombes and Aarush Katta and Clayton Mullis and Mitchell Wortsman and Patrick Schramowski and Srivatsa R Kundurthy and Katherine Crowson and Ludwig Schmidt and Robert Kaczmarczyk and Jenia Jitsev}, booktitle={Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track}, year={2022}, url={https://openreview.net/forum?id=M3Y74vmsMcY} }
@misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} }
@inproceedings{Radford2021LearningTV, title={Learning Transferable Visual Models From Natural Language Supervision}, author={Alec Radford and Jong Wook Kim and Chris Hallacy and A. Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever}, booktitle={ICML}, year={2021} }
@article{liu2022convnet, author = {Zhuang Liu and Hanzi Mao and Chao-Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie}, title = {A ConvNet for the 2020s}, journal = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2022}, }