模型:

timm/convit_tiny.fb_in1k

英文

convit_tiny.fb_in1k的模型卡片

一种ConViT图像分类模型。由作者使用ImageNet-1k数据集进行训练。

模型细节

  • 模型类型:图像分类/特征骨干
  • 模型统计数据:
    • 参数数量(百万):5.7
    • GMACs:1.3
    • 激活函数数量(百万):7.9
    • 图像大小:224 x 224
  • 相关论文:
    • ConViT:使用软卷积归纳偏置改进Vision Transformers
  • 数据集:ImageNet-1k
  • 原始论文编号: https://github.com/facebookresearch/convit

模型用途

图像分类

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('convit_tiny.fb_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

图像嵌入

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'convit_tiny.fb_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 197, 192) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

模型比较

在timm中了解此模型的数据集和运行时指标。

引用

@article{d2021convit,
  title={ConViT: Improving Vision Transformers with Soft Convolutional Inductive Biases},
  author={d'Ascoli, St{'e}phane and Touvron, Hugo and Leavitt, Matthew and Morcos, Ari and Biroli, Giulio and Sagun, Levent},
  journal={arXiv preprint arXiv:2103.10697},
  year={2021}
}