模型:

timm/coatnet_2_rw_224.sw_in12k_ft_in1k

英文

coatnet_2_rw_224.sw_in12k_ft_in1k的模型卡片

一个特定于timm的CoAtNet图像分类模型。在ImageNet-12k(完整ImageNet-22k的11821类子集)上在timm上进行预训练,并由Ross Wightman在ImageNet-1k上进行微调。

由于 TRC 计划的支持,ImageNet-12k的训练在TPU上进行。

使用8x GPU Lambda Labs 云实例进行微调。

maxxvit.py 中的模型变体

MaxxViT涵盖了许多相关的模型架构,它们具有共同的结构,包括:

  • CoAtNet-在早期阶段使用MBConv(深度可分离)卷积块,并在后期使用自注意力变换块。
  • MaxViT-所有阶段均使用统一的块,每个块包含一个MBConv(深度可分离)卷积块,后面是两个具有不同分区方案(窗口和网格)的自注意力块。
  • CoAtNeXt-使用ConvNeXt块代替CoAtNet中的MBConv块的timm特定架构。所有标准化层都是LayerNorm(没有BatchNorm)。
  • MaxxViT-使用ConvNeXt块代替MaxViT中的MBConv块的timm特定架构。所有标准化层都是LayerNorm(没有BatchNorm)。
  • MaxxViT-V2-一种MaxxViT变体,它去除了窗口块的注意力,仅保留了ConvNeXt块和具有更大宽度的网格注意力以进行补偿。

除了上述主要变体之外,从一个模型到另一个模型可以存在更细微的变化。带有字符串“rw”的任何模型名称都是timm特定的配置,其中进行了建模调整,以支持PyTorch的即时使用。这些是在训练模型的初始再现时创建的,因此存在差异。带有字符串“tf”的所有模型都精确匹配原始论文作者基于TensorFlow的模型,权重已转换为PyTorch。这涵盖了多个MaxViT模型。官方的CoAtNet模型从未发布过。

模型细节

  • 模型类型:图像分类/特征主干
  • 模型统计信息:
    • 参数(M):73.9
    • GMACs:15.1
    • 激活(M):49.2
    • 图像大小:224 x 224
  • 论文:
  • 数据集: ImageNet-1k
  • 预训练数据集: ImageNet-12k

模型用途

图像分类

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('coatnet_2_rw_224.sw_in12k_ft_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

特征图提取

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'coatnet_2_rw_224.sw_in12k_ft_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 128, 112, 112])
    #  torch.Size([1, 128, 56, 56])
    #  torch.Size([1, 256, 28, 28])
    #  torch.Size([1, 512, 14, 14])
    #  torch.Size([1, 1024, 7, 7])

    print(o.shape)

图像嵌入

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'coatnet_2_rw_224.sw_in12k_ft_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 1024, 7, 7) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

模型比较

按Top-1进行比较

model top1 top5 samples / sec Params (M) GMAC Act (M)
12310321 88.53 98.64 21.76 475.77 534.14 1413.22
12311321 88.32 98.54 42.53 475.32 292.78 668.76
12312321 88.20 98.53 50.87 119.88 138.02 703.99
12313321 88.04 98.40 36.42 212.33 244.75 942.15
12314321 87.98 98.56 71.75 212.03 132.55 445.84
12315321 87.92 98.54 104.71 119.65 73.80 332.90
12316321 87.81 98.37 106.55 116.14 70.97 318.95
12317321 87.47 98.37 149.49 116.09 72.98 213.74
12318321 87.39 98.31 160.80 73.88 47.69 209.43
12319321 86.89 98.02 375.86 116.14 23.15 92.64
12320321 86.64 98.02 501.03 116.09 24.20 62.77
12321321 86.60 97.92 50.75 119.88 138.02 703.99
12322321 86.57 97.89 631.88 73.87 15.09 49.22
12323321 86.52 97.88 36.04 212.33 244.75 942.15
12324321 86.49 97.90 620.58 73.88 15.18 54.78
12325321 86.29 97.80 101.09 119.65 73.80 332.90
12326321 86.23 97.69 70.56 212.03 132.55 445.84
12327321 86.10 97.76 88.63 69.13 67.26 383.77
12328321 85.67 97.58 144.25 31.05 33.49 257.59
12329321 85.54 97.46 188.35 69.02 35.87 183.65
12330321 85.11 97.38 293.46 30.98 17.53 123.42
12331321 84.93 96.97 247.71 211.79 43.68 127.35
12332321 84.90 96.96 1025.45 41.72 8.11 40.13
12333321 84.85 96.99 358.25 119.47 24.04 95.01
12334321 84.63 97.06 575.53 66.01 14.67 58.38
12335321 84.61 96.74 625.81 73.88 15.18 54.78
12336321 84.49 96.76 693.82 64.90 10.75 49.30
12337321 84.43 96.83 647.96 68.93 11.66 53.17
12338321 84.23 96.78 807.21 29.15 6.77 46.92
12339321 83.62 96.38 989.59 41.72 8.04 34.60
12340321 83.50 96.50 1100.53 29.06 5.11 33.11
12341321 83.41 96.59 1004.94 30.92 5.60 35.78
12342321 83.36 96.45 1093.03 41.69 7.85 35.47
12343321 83.11 96.33 1276.88 23.70 6.26 23.05
12344321 83.03 96.34 1341.24 16.78 4.37 26.05
12345321 82.96 96.26 1283.24 15.50 4.47 31.92
12346321 82.93 96.23 1218.17 15.45 4.46 30.28
12347321 82.39 96.19 1600.14 27.44 4.67 22.04
12348321 82.39 95.84 1831.21 27.44 4.43 18.73
12349321 82.05 95.87 2109.09 15.15 2.62 20.34
12350321 81.95 95.92 2525.52 14.70 2.47 12.80
12351321 81.70 95.64 2344.52 15.14 2.41 15.41
12352321 80.53 95.21 1594.71 7.52 1.85 24.86

按吞吐量(样本/秒)进行比较

model top1 top5 samples / sec Params (M) GMAC Act (M)
12350321 81.95 95.92 2525.52 14.70 2.47 12.80
12351321 81.70 95.64 2344.52 15.14 2.41 15.41
12349321 82.05 95.87 2109.09 15.15 2.62 20.34
12348321 82.39 95.84 1831.21 27.44 4.43 18.73
12347321 82.39 96.19 1600.14 27.44 4.67 22.04
12352321 80.53 95.21 1594.71 7.52 1.85 24.86
12344321 83.03 96.34 1341.24 16.78 4.37 26.05
12345321 82.96 96.26 1283.24 15.50 4.47 31.92
12343321 83.11 96.33 1276.88 23.70 6.26 23.05
12346321 82.93 96.23 1218.17 15.45 4.46 30.28
12340321 83.50 96.50 1100.53 29.06 5.11 33.11
12342321 83.36 96.45 1093.03 41.69 7.85 35.47
12332321 84.90 96.96 1025.45 41.72 8.11 40.13
12341321 83.41 96.59 1004.94 30.92 5.60 35.78
12339321 83.62 96.38 989.59 41.72 8.04 34.60
12338321 84.23 96.78 807.21 29.15 6.77 46.92
12336321 84.49 96.76 693.82 64.90 10.75 49.30
12337321 84.43 96.83 647.96 68.93 11.66 53.17
12322321 86.57 97.89 631.88 73.87 15.09 49.22
12335321 84.61 96.74 625.81 73.88 15.18 54.78
12324321 86.49 97.90 620.58 73.88 15.18 54.78
12334321 84.63 97.06 575.53 66.01 14.67 58.38
12320321 86.64 98.02 501.03 116.09 24.20 62.77
12319321 86.89 98.02 375.86 116.14 23.15 92.64
12333321 84.85 96.99 358.25 119.47 24.04 95.01
12330321 85.11 97.38 293.46 30.98 17.53 123.42
12331321 84.93 96.97 247.71 211.79 43.68 127.35
12329321 85.54 97.46 188.35 69.02 35.87 183.65
12318321 87.39 98.31 160.80 73.88 47.69 209.43
12317321 87.47 98.37 149.49 116.09 72.98 213.74
12328321 85.67 97.58 144.25 31.05 33.49 257.59
12316321 87.81 98.37 106.55 116.14 70.97 318.95
12315321 87.92 98.54 104.71 119.65 73.80 332.90
12325321 86.29 97.80 101.09 119.65 73.80 332.90
12327321 86.10 97.76 88.63 69.13 67.26 383.77
12314321 87.98 98.56 71.75 212.03 132.55 445.84
12326321 86.23 97.69 70.56 212.03 132.55 445.84
12312321 88.20 98.53 50.87 119.88 138.02 703.99
12321321 86.60 97.92 50.75 119.88 138.02 703.99
12311321 88.32 98.54 42.53 475.32 292.78 668.76
12313321 88.04 98.40 36.42 212.33 244.75 942.15
12323321 86.52 97.88 36.04 212.33 244.75 942.15
12310321 88.53 98.64 21.76 475.77 534.14 1413.22

引用

@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
@article{tu2022maxvit,
  title={MaxViT: Multi-Axis Vision Transformer},
  author={Tu, Zhengzhong and Talebi, Hossein and Zhang, Han and Yang, Feng and Milanfar, Peyman and Bovik, Alan and Li, Yinxiao},
  journal={ECCV},
  year={2022},
}        
@article{dai2021coatnet,
  title={CoAtNet: Marrying Convolution and Attention for All Data Sizes},
  author={Dai, Zihang and Liu, Hanxiao and Le, Quoc V and Tan, Mingxing},
  journal={arXiv preprint arXiv:2106.04803},
  year={2021}
}