模型:
theblackcat102/pythia-1b-deduped-sft
此模型卡旨在成为新模型的基本模板。它是使用 this raw template 生成的。
请参考右侧的示例
用户(直接使用者和下游应用)应了解模型的风险、偏见和局限性。有关进一步建议,需要更多信息。
使用下面的代码来开始使用模型。
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "theblackcat102/pythia-1b-deduped-sft"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name).half().eval().cuda()
input_text = "<human>What's the earth population?<bot>"
inputs = tokenizer(input_text, return_tensors="pt", padding=True).to(0)
outputs = model.generate(
    **inputs,
    early_stopping=True,
    max_new_tokens=args.max_new_tokens,
    do_sample=True,
    top_k=args.top_k,
    temperature=args.temperature,
    pad_token_id=tokenizer.eos_token_id,
    # dialogue_collator.py line 36
)
output = tokenizer.decode(outputs[0], truncate_before_pattern=[r"\n\n^#", "^'''", "\n\n\n"])
print(output)
deepspeed trainer_sft.py --configs defaults pythia-1b --deepspeed
此模型进行了1000次迭代训练。
defaults:
  learning_rate: 1e-5
  gradient_checkpointing: false
  gradient_accumulation_steps: 32
  per_device_train_batch_size: 2
  per_device_eval_batch_size: 2
  weight_decay: 0.00
  warmup_steps: 600
  eval_steps: 250
  save_steps: 250
  max_length: 512
  num_train_epochs: 2
  logging_steps: 10
  max_grad_norm: 2.0
  save_total_limit: 4
  fp16: true
  eval_accumulation_steps:
  freeze_layer:
  datasets:
    - gsm8k_hard
    - webgpt
    - squad_v2
    - adversarial_qa
    - private_tuning
    - oa_translated
    - prosocial_dialogue
    - math_qa
    - wikihow
    - joke
    - gsm8k
    - ted_trans_en-hi
    - ted_trans_de-ja
    - ted_trans_nl-en
    - ted_trans_en-ja
    - ted_trans_en-es
    - ted_trans_en-ms
    - xsum:
        fraction: 0.5
    - cnn_dailymail:
        fraction: 0.5
    - multi_news:
        fraction: 0.5
    - tldr_news:
        fraction: 0.5
    - scitldr:
        fraction: 0.5
    - samsum:
        fraction: 0.5
    - debate_sum:
        fraction: 0.5
    - billsum:
        fraction: 0.5
    - wmt2019_zh-en:
        fraction: 0.9
    - wmt2019_ru-en:
        fraction: 0.9
    - wmt2019_de-en:
        fraction: 0.9
    - wmt2019_fr-de:
        fraction: 0.9
    - essay_instruction
    - reddit_eli5
    - reddit_askh
    - reddit_asks
  cache_dir: /fsx/home-theblackcat02/.cache
  loss_fn: CrossEntropyLoss
  eval_size:
  log_dir: "base"
  quantization: false
  seq2seqmodel: false
  poly_eps: 1.0
  fuse_gelu: true
  log_wandb: true
  samples_mixing: true # uses collator that mixes samples in the batch to create a single sample with possible multiple tasks within
  verbose: false
pythia-1b:
  learning_rate: 5e-6
  model_name: EleutherAI/pythia-1b-deduped
  weight_decay: 0.01
  max_length: 540
  fp16: true
  warmup_steps: 1000
  gradient_accumulation_steps: 20
  per_device_train_batch_size: 20
  per_device_eval_batch_size: 2
  eval_steps: 500
  save_steps: 500
[需要更多信息]
[需要更多信息]
[需要更多信息]
[需要更多信息]
[需要更多信息]
可以使用 Machine Learning Impact calculator 和 Lacoste et al. (2019) 中提供的方法估算碳排放量。
[需要更多信息]
[需要更多信息]
[需要更多信息]
[需要更多信息]
BibTeX:
[需要更多信息]
APA:
[需要更多信息]
[需要更多信息]
[需要更多信息]
[需要更多信息]