模型:
racai/distilbert-base-romanian-cased
这个存储库包含了大小写不敏感的罗马尼亚DistilBERT(在论文中称为Distil-BERT-base-ro)。用于蒸馏的教师模型是: dumitrescustefan/bert-base-romanian-cased-v1 .
该模型在 this paper 中被介绍。相邻的代码可以在 here 中找到。
from transformers import AutoTokenizer, AutoModel
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained("racai/distilbert-base-romanian-cased")
model = AutoModel.from_pretrained("racai/distilbert-base-romanian-cased")
# tokenize a test sentence
input_ids = tokenizer.encode("Aceasta este o propoziție de test.", add_special_tokens=True, return_tensors="pt")
# run the tokens trough the model
outputs = model(input_ids)
print(outputs)
 它比其教师模型bert-base-romanian-cased-v1小35%。
| Model | Size (MB) | Params (Millions) | 
|---|---|---|
| bert-base-romanian-cased-v1 | 477 | 124 | 
| distilbert-base-romanian-cased | 312 | 81 | 
我们对该模型与其教师模型在5个罗马尼亚任务上进行了评估:
| Model | UPOS | XPOS | NER | SAPN | SAR | DI | STS | 
|---|---|---|---|---|---|---|---|
| bert-base-romanian-cased-v1 | 98.00 | 96.46 | 85.88 | 98.07 | 79.61 | 95.58 | 80.30 | 
| distilbert-base-romanian-cased | 97.97 | 97.08 | 83.35 | 98.20 | 80.51 | 96.31 | 80.57 | 
@article{avram2021distilling,
  title={Distilling the Knowledge of Romanian BERTs Using Multiple Teachers},
  author={Andrei-Marius Avram and Darius Catrina and Dumitru-Clementin Cercel and Mihai Dascălu and Traian Rebedea and Vasile Păiş and Dan Tufiş},
  journal={ArXiv},
  year={2021},
  volume={abs/2112.12650}
}