模型:
opennyaiorg/en_legal_ner_trf
[AUTHORS] "[PAPER NAME]". [PAPER DETAILS] [PAPER LINK]
Indian Legal Named Entity Recognition(NER): Identifying relevant named entities in an Indian legal judgement using legal NER trained on spacy .
| Type | Score |
|---|---|
| F1-Score | 91.076 |
| Precision | 91.979 |
| Recall | 90.19 |
| Feature | Description |
|---|---|
| Name | en_legal_ner_trf |
| Version | 3.2.0 |
| spaCy | >=3.2.2,<3.3.0 |
| Default Pipeline | transformer , ner |
| Components | transformer , ner |
| Vectors | 0 keys, 0 unique vectors (0 dimensions) |
| Sources | InLegalNER Train Data GitHub |
| License | MIT |
| Author | Aman Tiwari |
Install the model using pip
pip install https://huggingface.co/opennyaiorg/en_legal_ner_trf/resolve/main/en_legal_ner_trf-any-py3-none-any.whl
Using pretrained NER model
# Using spacy.load().
import spacy
nlp = spacy.load("en_legal_ner_trf")
text = "Section 319 Cr.P.C. contemplates a situation where the evidence adduced by the prosecution for Respondent No.3-G. Sambiah on 20th June 1984"
doc = nlp(text)
# Print indentified entites
for ent in doc.ents:
print(ent,ent.label_)
##OUTPUT
#Section 319 PROVISION
#Cr.P.C. STATUTE
#G. Sambiah RESPONDENT
#20th June 1984 DATE
| ENTITY | BELONGS TO |
|---|---|
| LAWYER | PREAMBLE |
| COURT | PREAMBLE, JUDGEMENT |
| JUDGE | PREAMBLE, JUDGEMENT |
| PETITIONER | PREAMBLE, JUDGEMENT |
| RESPONDENT | PREAMBLE, JUDGEMENT |
| CASE_NUMBER | JUDGEMENT |
| GPE | JUDGEMENT |
| DATE | JUDGEMENT |
| ORG | JUDGEMENT |
| STATUTE | JUDGEMENT |
| WITNESS | JUDGEMENT |
| PRECEDENT | JUDGEMENT |
| PROVISION | JUDGEMENT |
| OTHER_PERSON | JUDGEMENT |
[CITATION DETAILS]