模型:
oliverguhr/fullstop-dutch-sonar-punctuation-prediction
This model predicts the punctuation of Dutch texts. We developed it to restore the punctuation of transcribed spoken language.
This model was trained on the SoNaR Dataset .
The model restores the following punctuation markers: "." "," "?" "-" ":"
We provide a simple python package that allows you to process text of any length.
To get started install the package from pypi :
pip install deepmultilingualpunctuation
from deepmultilingualpunctuation import PunctuationModel model = PunctuationModel(model="oliverguhr/fullstop-dutch-sonar-punctuation-prediction") text = "hervatting van de zitting ik verklaar de zitting van het europees parlement die op vrijdag 17 december werd onderbroken te zijn hervat" result = model.restore_punctuation(text) print(result)
output
hervatting van de zitting. ik verklaar de zitting van het europees parlement, die op vrijdag 17 december werd onderbroken, te zijn hervat.
from deepmultilingualpunctuation import PunctuationModel model = PunctuationModel(model="oliverguhr/fullstop-dutch-sonar-punctuation-prediction") text = "hervatting van de zitting ik verklaar de zitting van het europees parlement die op vrijdag 17 december werd onderbroken te zijn hervat" clean_text = model.preprocess(text) labled_words = model.predict(clean_text) print(labled_words)
output
[['hervatting', '0', 0.99998724], ['van', '0', 0.9999784], ['de', '0', 0.99991274], ['zitting', '.', 0.6771242], ['ik', '0', 0.9999466], ['verklaar', '0', 0.9998566], ['de', '0', 0.9999783], ['zitting', '0', 0.9999809], ['van', '0', 0.99996245], ['het', '0', 0.99997795], ['europees', '0', 0.9999783], ['parlement', ',', 0.9908242], ['die', '0', 0.999985], ['op', '0', 0.99998224], ['vrijdag', '0', 0.9999831], ['17', '0', 0.99997985], ['december', '0', 0.9999827], ['werd', '0', 0.999982], ['onderbroken', ',', 0.9951485], ['te', '0', 0.9999677], ['zijn', '0', 0.99997723], ['hervat', '.', 0.9957053]]
The performance differs for the single punctuation markers as hyphens and colons, in many cases, are optional and can be substituted by either a comma or a full stop. The model achieves the following F1 scores:
| Label | F1 Score | 
|---|---|
| 0 | 0.985816 | 
| . | 0.854380 | 
| ? | 0.684060 | 
| , | 0.719308 | 
| : | 0.696088 | 
| - | 0.722000 | 
| macro average | 0.776942 | 
| micro average | 0.963427 | 
| Languages | Model | 
|---|---|
| English, Italian, French and German | oliverguhr/fullstop-punctuation-multilang-large | 
| English, Italian, French, German and Dutch | oliverguhr/fullstop-punctuation-multilingual-sonar-base | 
| Dutch | oliverguhr/fullstop-dutch-sonar-punctuation-prediction | 
| Languages | Model | 
|---|---|
| English, German, French, Spanish, Bulgarian, Italian, Polish, Dutch, Czech, Portugese, Slovak, Slovenian | kredor/punctuate-all | 
| Catalan | softcatala/fullstop-catalan-punctuation-prediction | 
You can use different models by setting the model parameter:
model = PunctuationModel(model = "oliverguhr/fullstop-dutch-punctuation-prediction")
@misc{https://doi.org/10.48550/arxiv.2301.03319,
  doi = {10.48550/ARXIV.2301.03319},
  url = {https://arxiv.org/abs/2301.03319},
  author = {Vandeghinste, Vincent and Guhr, Oliver},
  keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences, I.2.7},
  title = {FullStop:Punctuation and Segmentation Prediction for Dutch with Transformers},
  publisher = {arXiv},
  year = {2023},  
  copyright = {Creative Commons Attribution Share Alike 4.0 International}
}