模型:
mrm8488/bert-spanish-cased-finetuned-ner
This model is a fine-tuned on NER-C version of the Spanish BERT cased (BETO) for NER downstream task.
I preprocessed the dataset and split it as train / dev (80/20)
| Dataset | # Examples | 
|---|---|
| Train | 8.7 K | 
| Dev | 2.2 K | 
Labels covered:
B-LOC B-MISC B-ORG B-PER I-LOC I-MISC I-ORG I-PER O
| Metric | # score | 
|---|---|
| F1 | 90.17 | 
| Precision | 89.86 | 
| Recall | 90.47 | 
| Model | # F1 score | Size(MB) | 
|---|---|---|
| bert-base-spanish-wwm-cased (BETO) | 88.43 | 421 | 
| bert-spanish-cased-finetuned-ner (this one) | 90.17 | 420 | 
| Best Multilingual BERT | 87.38 | 681 | 
| TinyBERT-spanish-uncased-finetuned-ner | 70.00 | 55 | 
Fast usage with pipelines :
from transformers import pipeline
nlp_ner = pipeline(
    "ner",
    model="mrm8488/bert-spanish-cased-finetuned-ner",
    tokenizer=(
        'mrm8488/bert-spanish-cased-finetuned-ner',  
        {"use_fast": False}
))
text = 'Mis amigos están pensando viajar a Londres este verano'
nlp_ner(text)
#Output: [{'entity': 'B-LOC', 'score': 0.9998720288276672, 'word': 'Londres'}]
 Created by Manuel Romero/@mrm8488
Made with ♥ in Spain