模型:
lmqg/mbart-large-cc25-dequad-qag
这个模型是在 lmqg/qag_dequad (数据集名称: default)上,通过 lmqg 对 facebook/mbart-large-cc25 进行了细调,用于问答对生成任务。
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="de", model="lmqg/mbart-large-cc25-dequad-qag")
# model prediction
question_answer_pairs = model.generate_qa("das erste weltweit errichtete Hermann Brehmer 1855 im niederschlesischen ''Görbersdorf'' (heute Sokołowsko, Polen).")
 from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mbart-large-cc25-dequad-qag")
output = pipe("Empfangs- und Sendeantenne sollen in ihrer Polarisation übereinstimmen, andernfalls wird die Signalübertragung stark gedämpft. ")
 | Score | Type | Dataset | |
|---|---|---|---|
| QAAlignedF1Score (BERTScore) | 69.25 | default | 12313321 | 
| QAAlignedF1Score (MoverScore) | 50.71 | default | 12313321 | 
| QAAlignedPrecision (BERTScore) | 70.69 | default | 12313321 | 
| QAAlignedPrecision (MoverScore) | 51.81 | default | 12313321 | 
| QAAlignedRecall (BERTScore) | 68.05 | default | 12313321 | 
| QAAlignedRecall (MoverScore) | 49.78 | default | 12313321 | 
在微调过程中使用了以下超参数:
完整配置见 fine-tuning config file 。
@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}