模型:
krlvi/sentence-t5-base-nlpl-code_search_net
这是一个模型:它将句子和段落映射到一个768维度的密集向量空间,可用于聚类或语义搜索等任务。
它已经在 code_search_net 数据集上进行了训练
当您安装了 sentence-transformers 后,使用此模型变得很容易:
pip install -U sentence-transformers
然后,您可以像这样使用模型:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
对于该模型的自动评估,请参见 Sentence Embeddings Benchmark: https://seb.sbert.net
该模型使用以下参数进行训练:
DataLoader :
torch.utils.data.dataloader.DataLoader 长度为58777,带有以下参数:
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss :
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss 带有以下参数:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
fit() 方法的参数:
{
"epochs": 4,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 100,
"weight_decay": 0.01
}
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: T5EncoderModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(3): Normalize()
)