模型:
flair/upos-english
This is the standard universal part-of-speech tagging model for English that ships with Flair .
F1-Score: 98,6 (Ontonotes)
Predicts universal POS tags:
| tag | meaning | 
|---|---|
| ADJ | adjective | 
| ADP | adposition | 
| ADV | adverb | 
| AUX | auxiliary | 
| CCONJ | coordinating conjunction | 
| DET | determiner | 
| INTJ | interjection | 
| NOUN | noun | 
| NUM | numeral | 
| PART | particle | 
| PRON | pronoun | 
| PROPN | proper noun | 
| PUNCT | punctuation | 
| SCONJ | subordinating conjunction | 
| SYM | symbol | 
| VERB | verb | 
| X | other | 
Based on Flair embeddings and LSTM-CRF.
Requires: Flair ( pip install flair )
from flair.data import Sentence
from flair.models import SequenceTagger
# load tagger
tagger = SequenceTagger.load("flair/upos-english")
# make example sentence
sentence = Sentence("I love Berlin.")
# predict NER tags
tagger.predict(sentence)
# print sentence
print(sentence)
# print predicted NER spans
print('The following NER tags are found:')
# iterate over entities and print
for entity in sentence.get_spans('pos'):
    print(entity)
 This yields the following output:
Span [1]: "I" [− Labels: PRON (0.9996)] Span [2]: "love" [− Labels: VERB (1.0)] Span [3]: "Berlin" [− Labels: PROPN (0.9986)] Span [4]: "." [− Labels: PUNCT (1.0)]
So, the word " I " is labeled as a pronoun (PRON), " love " is labeled as a verb (VERB) and " Berlin " is labeled as a proper noun (PROPN) in the sentence " I love Berlin ".
The following Flair script was used to train this model:
from flair.data import Corpus
from flair.datasets import ColumnCorpus
from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings
# 1. load the corpus (Ontonotes does not ship with Flair, you need to download and reformat into a column format yourself)
corpus: Corpus = ColumnCorpus(
                "resources/tasks/onto-ner",
                column_format={0: "text", 1: "pos", 2: "upos", 3: "ner"},
                tag_to_bioes="ner",
            )
# 2. what tag do we want to predict?
tag_type = 'upos'
# 3. make the tag dictionary from the corpus
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
# 4. initialize each embedding we use
embedding_types = [
    # contextual string embeddings, forward
    FlairEmbeddings('news-forward'),
    # contextual string embeddings, backward
    FlairEmbeddings('news-backward'),
]
# embedding stack consists of Flair and GloVe embeddings
embeddings = StackedEmbeddings(embeddings=embedding_types)
# 5. initialize sequence tagger
from flair.models import SequenceTagger
tagger = SequenceTagger(hidden_size=256,
                        embeddings=embeddings,
                        tag_dictionary=tag_dictionary,
                        tag_type=tag_type)
# 6. initialize trainer
from flair.trainers import ModelTrainer
trainer = ModelTrainer(tagger, corpus)
# 7. run training
trainer.train('resources/taggers/upos-english',
              train_with_dev=True,
              max_epochs=150)
 Please cite the following paper when using this model.
@inproceedings{akbik2018coling,
  title={Contextual String Embeddings for Sequence Labeling},
  author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland},
  booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics},
  pages     = {1638--1649},
  year      = {2018}
}
 The Flair issue tracker is available here .