模型:
flair/ner-english-fast
This is the fast 4-class NER model for English that ships with Flair .
F1-Score: 92,92 (corrected CoNLL-03)
Predicts 4 tags:
| tag | meaning | 
|---|---|
| PER | person name | 
| LOC | location name | 
| ORG | organization name | 
| MISC | other name | 
Based on Flair embeddings and LSTM-CRF.
Requires: Flair ( pip install flair )
from flair.data import Sentence
from flair.models import SequenceTagger
# load tagger
tagger = SequenceTagger.load("flair/ner-english-fast")
# make example sentence
sentence = Sentence("George Washington went to Washington")
# predict NER tags
tagger.predict(sentence)
# print sentence
print(sentence)
# print predicted NER spans
print('The following NER tags are found:')
# iterate over entities and print
for entity in sentence.get_spans('ner'):
    print(entity)
 This yields the following output:
Span [1,2]: "George Washington" [− Labels: PER (0.9515)] Span [5]: "Washington" [− Labels: LOC (0.992)]
So, the entities " George Washington " (labeled as a person ) and " Washington " (labeled as a location ) are found in the sentence " George Washington went to Washington ".
The following Flair script was used to train this model:
from flair.data import Corpus
from flair.datasets import CONLL_03
from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings
# 1. get the corpus
corpus: Corpus = CONLL_03()
# 2. what tag do we want to predict?
tag_type = 'ner'
# 3. make the tag dictionary from the corpus
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
# 4. initialize each embedding we use
embedding_types = [
    # GloVe embeddings
    WordEmbeddings('glove'),
    # contextual string embeddings, forward
    FlairEmbeddings('news-forward-fast'),
    # contextual string embeddings, backward
    FlairEmbeddings('news-backward-fast'),
]
# embedding stack consists of Flair and GloVe embeddings
embeddings = StackedEmbeddings(embeddings=embedding_types)
# 5. initialize sequence tagger
from flair.models import SequenceTagger
tagger = SequenceTagger(hidden_size=256,
                        embeddings=embeddings,
                        tag_dictionary=tag_dictionary,
                        tag_type=tag_type)
# 6. initialize trainer
from flair.trainers import ModelTrainer
trainer = ModelTrainer(tagger, corpus)
# 7. run training
trainer.train('resources/taggers/ner-english',
              train_with_dev=True,
              max_epochs=150)
 Please cite the following paper when using this model.
@inproceedings{akbik2018coling,
  title={Contextual String Embeddings for Sequence Labeling},
  author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland},
  booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics},
  pages     = {1638--1649},
  year      = {2018}
}
 The Flair issue tracker is available here .