模型:
flair/ner-dutch-large
This is the large 4-class NER model for Dutch that ships with Flair .
F1-Score: 95,25 (CoNLL-03 Dutch)
Predicts 4 tags:
| tag | meaning | 
|---|---|
| PER | person name | 
| LOC | location name | 
| ORG | organization name | 
| MISC | other name | 
Based on document-level XLM-R embeddings and FLERT .
Requires: Flair ( pip install flair )
from flair.data import Sentence
from flair.models import SequenceTagger
# load tagger
tagger = SequenceTagger.load("flair/ner-dutch-large")
# make example sentence
sentence = Sentence("George Washington ging naar Washington")
# predict NER tags
tagger.predict(sentence)
# print sentence
print(sentence)
# print predicted NER spans
print('The following NER tags are found:')
# iterate over entities and print
for entity in sentence.get_spans('ner'):
    print(entity)
 This yields the following output:
Span [1,2]: "George Washington" [− Labels: PER (1.0)] Span [5]: "Washington" [− Labels: LOC (1.0)]
So, the entities " George Washington " (labeled as a person ) and " Washington " (labeled as a location ) are found in the sentence " George Washington ging naar Washington ".
The following Flair script was used to train this model:
import torch
# 1. get the corpus
from flair.datasets import CONLL_03_DUTCH
corpus = CONLL_03_DUTCH()
# 2. what tag do we want to predict?
tag_type = 'ner'
# 3. make the tag dictionary from the corpus
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
# 4. initialize fine-tuneable transformer embeddings WITH document context
from flair.embeddings import TransformerWordEmbeddings
embeddings = TransformerWordEmbeddings(
    model='xlm-roberta-large',
    layers="-1",
    subtoken_pooling="first",
    fine_tune=True,
    use_context=True,
)
# 5. initialize bare-bones sequence tagger (no CRF, no RNN, no reprojection)
from flair.models import SequenceTagger
tagger = SequenceTagger(
    hidden_size=256,
    embeddings=embeddings,
    tag_dictionary=tag_dictionary,
    tag_type='ner',
    use_crf=False,
    use_rnn=False,
    reproject_embeddings=False,
)
# 6. initialize trainer with AdamW optimizer
from flair.trainers import ModelTrainer
trainer = ModelTrainer(tagger, corpus, optimizer=torch.optim.AdamW)
# 7. run training with XLM parameters (20 epochs, small LR)
from torch.optim.lr_scheduler import OneCycleLR
trainer.train('resources/taggers/ner-dutch-large',
              learning_rate=5.0e-6,
              mini_batch_size=4,
              mini_batch_chunk_size=1,
              max_epochs=20,
              scheduler=OneCycleLR,
              embeddings_storage_mode='none',
              weight_decay=0.,
              )
)
 Please cite the following paper when using this model.
@misc{schweter2020flert,
    title={FLERT: Document-Level Features for Named Entity Recognition},
    author={Stefan Schweter and Alan Akbik},
    year={2020},
    eprint={2011.06993},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
 The Flair issue tracker is available here .