xtreme_s_xlsr_300m_minds14
 
 
  This model is a fine-tuned version of
  
   facebook/wav2vec2-xls-r-300m
  
  on the GOOGLE/XTREME_S - MINDS14.ALL dataset.
It achieves the following results on the evaluation set:
 
 
  - 
   Accuracy: 0.9033
  
- 
   Accuracy Cs-cz: 0.9164
  
- 
   Accuracy De-de: 0.9477
  
- 
   Accuracy En-au: 0.9235
  
- 
   Accuracy En-gb: 0.9324
  
- 
   Accuracy En-us: 0.9326
  
- 
   Accuracy Es-es: 0.9177
  
- 
   Accuracy Fr-fr: 0.9444
  
- 
   Accuracy It-it: 0.9167
  
- 
   Accuracy Ko-kr: 0.8649
  
- 
   Accuracy Nl-nl: 0.9450
  
- 
   Accuracy Pl-pl: 0.9146
  
- 
   Accuracy Pt-pt: 0.8940
  
- 
   Accuracy Ru-ru: 0.8667
  
- 
   Accuracy Zh-cn: 0.7291
  
- 
   F1: 0.9015
  
- 
   F1 Cs-cz: 0.9154
  
- 
   F1 De-de: 0.9467
  
- 
   F1 En-au: 0.9199
  
- 
   F1 En-gb: 0.9334
  
- 
   F1 En-us: 0.9308
  
- 
   F1 Es-es: 0.9158
  
- 
   F1 Fr-fr: 0.9436
  
- 
   F1 It-it: 0.9135
  
- 
   F1 Ko-kr: 0.8642
  
- 
   F1 Nl-nl: 0.9440
  
- 
   F1 Pl-pl: 0.9159
  
- 
   F1 Pt-pt: 0.8883
  
- 
   F1 Ru-ru: 0.8646
  
- 
   F1 Zh-cn: 0.7249
  
- 
   Loss: 0.4119
  
- 
   Loss Cs-cz: 0.3790
  
- 
   Loss De-de: 0.2649
  
- 
   Loss En-au: 0.3459
  
- 
   Loss En-gb: 0.2853
  
- 
   Loss En-us: 0.2203
  
- 
   Loss Es-es: 0.2731
  
- 
   Loss Fr-fr: 0.1909
  
- 
   Loss It-it: 0.3520
  
- 
   Loss Ko-kr: 0.5431
  
- 
   Loss Nl-nl: 0.2515
  
- 
   Loss Pl-pl: 0.4113
  
- 
   Loss Pt-pt: 0.4798
  
- 
   Loss Ru-ru: 0.6470
  
- 
   Loss Zh-cn: 1.1216
  
- 
   Predict Samples: 4086
  
  Model description
 
 
  More information needed
 
 
  Intended uses & limitations
 
 
  More information needed
 
 
  Training and evaluation data
 
 
  More information needed
 
 
  Training procedure
 
 
  Training hyperparameters
 
 
  The following hyperparameters were used during training:
 
 
  - 
   learning_rate: 0.0003
  
- 
   train_batch_size: 32
  
- 
   eval_batch_size: 8
  
- 
   seed: 42
  
- 
   distributed_type: multi-GPU
  
- 
   num_devices: 2
  
- 
   total_train_batch_size: 64
  
- 
   total_eval_batch_size: 16
  
- 
   optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  
- 
   lr_scheduler_type: linear
  
- 
   lr_scheduler_warmup_steps: 1500
  
- 
   num_epochs: 50.0
  
- 
   mixed_precision_training: Native AMP
  
  Training results
 
 
  
   
    | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | 
   
    
     | 2.6739 | 5.41 | 200 | 2.5687 | 0.0430 | 0.1190 | 
    
     | 1.4953 | 10.81 | 400 | 1.6052 | 0.5550 | 0.5692 | 
    
     | 0.6177 | 16.22 | 600 | 0.7927 | 0.8052 | 0.8011 | 
    
     | 0.3609 | 21.62 | 800 | 0.5679 | 0.8609 | 0.8609 | 
    
     | 0.4972 | 27.03 | 1000 | 0.5944 | 0.8509 | 0.8523 | 
    
     | 0.1799 | 32.43 | 1200 | 0.6194 | 0.8623 | 0.8621 | 
    
     | 0.1308 | 37.84 | 1400 | 0.5956 | 0.8569 | 0.8548 | 
    
     | 0.2298 | 43.24 | 1600 | 0.5201 | 0.8732 | 0.8743 | 
    
     | 0.0052 | 48.65 | 1800 | 0.3826 | 0.9106 | 0.9103 | 
   
  
 
 
  Framework versions
 
 
  - 
   Transformers 4.18.0.dev0
  
- 
   Pytorch 1.10.2+cu113
  
- 
   Datasets 2.0.1.dev0
  
- 
   Tokenizers 0.11.6