英文

opus-mt-tc-big-en-ces_slk

神经机器翻译模型,用于将英语(en)翻译成捷克语和斯洛伐克语(ces+slk)。

该模型是 OPUS-MT project 的一部分,旨在使神经机器翻译模型在世界上的许多语言中得以广泛可用和可访问。所有模型最初是使用 Marian NMT 的惊人框架进行训练的, Marian NMT 是用纯C++编写的高效NMT实现。这些模型已经转换为pyTorch,使用了huggingface的transformers库。训练数据来自 OPUS ,并且训练流程使用了 OPUS-MT-train 的程序。

@inproceedings{tiedemann-thottingal-2020-opus,
    title = "{OPUS}-{MT} {--} Building open translation services for the World",
    author = {Tiedemann, J{\"o}rg  and Thottingal, Santhosh},
    booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
    month = nov,
    year = "2020",
    address = "Lisboa, Portugal",
    publisher = "European Association for Machine Translation",
    url = "https://aclanthology.org/2020.eamt-1.61",
    pages = "479--480",
}

@inproceedings{tiedemann-2020-tatoeba,
    title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
    author = {Tiedemann, J{\"o}rg},
    booktitle = "Proceedings of the Fifth Conference on Machine Translation",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.wmt-1.139",
    pages = "1174--1182",
}

模型信息

用法

简短的示例代码:

from transformers import MarianMTModel, MarianTokenizer

src_text = [
    ">>ces<< We were enemies.",
    ">>ces<< Do you think Tom knows what's going on?"
]

model_name = "pytorch-models/opus-mt-tc-big-en-ces_slk"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))

for t in translated:
    print( tokenizer.decode(t, skip_special_tokens=True) )

# expected output:
#     Byli jsme nepřátelé.
#     Myslíš, že Tom ví, co se děje?

您还可以使用transformers pipelines来使用OPUS-MT模型,例如:

from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-ces_slk")
print(pipe(">>ces<< We were enemies."))

# expected output: Byli jsme nepřátelé.

基准测试

langpair testset chr-F BLEU #sent #words
eng-ces tatoeba-test-v2021-08-07 0.66128 47.5 13824 91332
eng-ces flores101-devtest 0.60411 34.1 1012 22101
eng-slk flores101-devtest 0.62415 35.9 1012 22543
eng-ces multi30k_test_2016_flickr 0.58547 33.4 1000 10503
eng-ces multi30k_test_2018_flickr 0.59236 33.4 1071 11631
eng-ces newssyscomb2009 0.52702 25.3 502 10032
eng-ces news-test2008 0.50286 22.8 2051 42484
eng-ces newstest2009 0.52152 24.3 2525 55533
eng-ces newstest2010 0.52527 24.4 2489 52955
eng-ces newstest2011 0.52721 25.5 3003 65653
eng-ces newstest2012 0.50007 22.6 3003 65456
eng-ces newstest2013 0.53643 27.4 3000 57250
eng-ces newstest2014 0.58944 31.4 3003 59902
eng-ces newstest2015 0.55094 27.0 2656 45858
eng-ces newstest2016 0.56864 29.9 2999 56998
eng-ces newstest2017 0.52504 24.9 3005 54361
eng-ces newstest2018 0.52490 24.6 2983 54652
eng-ces newstest2019 0.53994 26.4 1997 43113

致谢

该工作得到 European Language Grid 的支持,作为 pilot project 2866 的一部分,受到 FoTran project 的支持,该项目由欧洲研究理事会(ERC)在欧洲联盟的Horizon 2020研究和创新计划(授予编号为771113的授权协议)以及欧洲联盟的Horizon 2020研究和创新计划(授权协议编号为780069)下的 MeMAD project 的资助。我们还感谢 CSC -- IT Center for Science 提供的慷慨计算资源和IT基础设施,芬兰。

模型转换信息

  • transformers版本:4.16.2
  • OPUS-MT git哈希:3405783
  • 端口时间:Wed Apr 13 16:46:48 EEST 2022
  • 端口机器:LM0-400-22516.local