数据集:
lmqg/qg_tweetqa
任务:
子任务:
language-modeling语言:
计算机处理:
monolingual大小:
1K<n<10K源数据集:
tweet_qa预印本库:
arxiv:2210.03992许可:
这是基于 tweet_qa 构建的问题和答案生成数据集。原始数据的测试集未公开发布,因此我们从训练集中随机抽取了测试问题。
英语(en)
'train'的一个示例如下。
{
  'answer': 'vine',
  'paragraph_question': 'question: what site does the link take you to?, context:5 years in 5 seconds. Darren Booth (@darbooth) January 25, 2013',
  'question': 'what site does the link take you to?',
  'paragraph': '5 years in 5 seconds. Darren Booth (@darbooth) January 25, 2013'
}
 所有拆分的数据字段都相同。
| train | validation | test | 
|---|---|---|
| 9489 | 1086 | 1203 | 
@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}