数据集:
eugenesiow/Set5
Set5 is a evaluation dataset with 5 RGB images for the image super resolution task. The 5 images of the dataset are (“baby”, “bird”, “butterfly”, “head”, “woman”).
Install with pip :
pip install datasets super-image
Evaluate a model with the super-image library:
from datasets import load_dataset from super_image import EdsrModel from super_image.data import EvalDataset, EvalMetrics dataset = load_dataset('eugenesiow/Set5', 'bicubic_x2', split='validation') eval_dataset = EvalDataset(dataset) model = EdsrModel.from_pretrained('eugenesiow/edsr-base', scale=2) EvalMetrics().evaluate(model, eval_dataset)
The dataset is commonly used for evaluation of the image-super-resolution task.
Unofficial super-image leaderboard for:
Not applicable.
An example of validation for bicubic_x2 looks as follows.
{ "hr": "/.cache/huggingface/datasets/downloads/extracted/Set5_HR/baby.png", "lr": "/.cache/huggingface/datasets/downloads/extracted/Set5_LR_x2/baby.png" }
The data fields are the same among all splits.
name | validation |
---|---|
bicubic_x2 | 5 |
bicubic_x3 | 5 |
bicubic_x4 | 5 |
[More Information Needed]
[More Information Needed]
Who are the source language producers?[More Information Needed]
No annotations.
Who are the annotators?No annotators.
[More Information Needed]
[More Information Needed]
[More Information Needed]
[More Information Needed]
Academic use only.
@article{bevilacqua2012low, title={Low-complexity single-image super-resolution based on nonnegative neighbor embedding}, author={Bevilacqua, Marco and Roumy, Aline and Guillemot, Christine and Alberi-Morel, Marie Line}, year={2012}, publisher={BMVA press} }
Thanks to @eugenesiow for adding this dataset.