数据集:
Bingsu/Gameplay_Images
A dataset from kaggle .
This is a dataset of 10 very famous video games in the world.
These include
There are 1000 images per class and all are sized 640 x 360 . They are in the .png format.
This Dataset was made by saving frames every few seconds from famous gameplay videos on Youtube.
※ This dataset was uploaded in January 2022. Game content updated after that will not be included.
CC-BY-4.0
>>> from datasets import load_dataset
>>> dataset = load_dataset("Bingsu/Gameplay_Images")
DatasetDict({
train: Dataset({
features: ['image', 'label'],
num_rows: 10000
})
})
>>> dataset["train"].features
{'image': Image(decode=True, id=None),
'label': ClassLabel(num_classes=10, names=['Among Us', 'Apex Legends', 'Fortnite', 'Forza Horizon', 'Free Fire', 'Genshin Impact', 'God of War', 'Minecraft', 'Roblox', 'Terraria'], id=None)}
download: 2.50 GiB generated: 1.68 GiB total: 4.19 GiB
Class Label Mappings:
{
"Among Us": 0,
"Apex Legends": 1,
"Fortnite": 2,
"Forza Horizon": 3,
"Free Fire": 4,
"Genshin Impact": 5,
"God of War": 6,
"Minecraft": 7,
"Roblox": 8,
"Terraria": 9
}
>>> dataset["train"][0]
{'image': <PIL.PngImagePlugin.PngImageFile image mode=RGBA size=640x360>,
'label': 0}
| train | |
|---|---|
| # of data | 10000 |
>>> ds_new = dataset["train"].train_test_split(0.2, seed=42, stratify_by_column="label")
>>> ds_new
DatasetDict({
train: Dataset({
features: ['image', 'label'],
num_rows: 8000
})
test: Dataset({
features: ['image', 'label'],
num_rows: 2000
})
})